
Shelve in
Mobile Computing

User level:
Beginning–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

GUI Design for Android Apps
GUI Design for Android Apps is the perfect—and concise—introduction for mobile
app developers and designers. Through easy-to-follow tutorials, code samples, and
case studies, the book shows the must-know principles for user-interface design
for Android apps running on the Intel platform, including smartphones, tablets, and
embedded devices.

This book is jointly developed for individual learning by Intel Software College
and China Shanghai JiaoTong University, and is excerpted from Android Application
Development for the Intel ® Platform.

What You’ll Learn:

• Key aspects of why UI and UX design for embedded systems is
different than for desktops

• Troubleshooting UI design issues
• Understanding how key concepts such as state transition, Context class,

and intents work
• How to use the interface app design tools provided by Android
• Planning for complex apps (apps with multiple activities)
• Optimizing app design for touchscreen input

Cohen
Wang

9 781484 203835

52999
ISBN 978-1-4842-0383-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Lead Project Editor ��� xi

About the Lead Contributing Author ��� xiii

About the Technical Reviewer ��� xv

Introduction ��� xvii

 Chapter 1: GUI Design for Android Apps, Part 1: ■
General Overview ��� 1

 Chapter 2: GUI Design for Android Apps, Part 2: ■
The Android-Specific GUI �� 33

 Chapter 3: GUI Design for Android Apps, Part 3: ■
Designing Complex Applications �� 71

 Chapter 4: GUI Design for Android Apps, Part 4: ■
Graphic Interface and Touchscreen Input ����������������������������������� 105

Index �� 135

xvii

Introduction

This mini book is a collection of four chapters pulled from Android Application
Development for the Intel Platform, designed to give developers an introduction to
creating great user interfaces for their Android applications. These chapters cover topics
ranging from the differences between developing UIs for desktop systems and embedded
systems to optimizing the UI of applications for touchscreens.

Chapter 1
This chapter introduces the general GUI design method for desktop systems and then
shows how designing the UI and UX for embedded systems is different. Next, it discusses
general methods and principles of GUI design for Android applications and how to develop
user interfaces suitable for typical user interaction on Android smartphone and tablets.

Chapter 2
This chapter introduces Android interface design by having you create a simple
application called GuiExam. You learn about the state transitions of activities, the
Context class, intents, and the relationship between applications and activities. Finally,
the chapter shows how to use the layout as an interface by changing the layout file
activity_main.xml, and how the button, event, and inner event listeners work.

Chapter 3
In this chapter, you learn how to create an application with multiple activities. This application
is used to introduce the explicit and implicit trigger mechanisms of activities. Next, you see an
example of an application with parameters triggered by an activity in a different application,
which will help you understand of the exchange mechanism for the activity’s parameters.

Chapter 4
This chapter introduces the basic framework of drawing in the view, how the drawing
framework responds to touchscreen input, and how to control the display of the
view as well as the multi-touch code framework. Examples illustrate the multi-touch
programming framework and keyboard-input responses. You also learn how to respond
to hardware buttons on Android devices, such as Volume +, Volume -, Power, Home,
Menu, Back, and Search. After that, you see the three different dialog boxes for Android,
including the activity dialog theme, specific dialog classes, and toast reminders. Finally,
you learn how to change application property settings.

1

Chapter 1

GUI Design for Android
Apps, Part 1: General
Overview

Since its emergence in the 1980s, the concept of the graphical user interface (GUI) has
become an indispensable part of human-computer interaction (HCI). As embedded
systems have evolved, they have gradually adopted this concept as well. The Android
embedded OS running on the Intel Atom hardware platform is at the forefront of this
movement.

Because resources are limited, the GUI design of Android systems is more
challenging than that of desktop systems. In addition, users have more rigorous demands
and expectations for a high-quality user experience. Interface design has become one
of the important factors in determining the success of systems and applications on the
market. This chapter introduces how to develop user interfaces suitable for typical user
interaction on Android embedded systems.

Overview of GUIs for Embedded Applications
These days, the user interface (UI) and user experience (UX) of software are increasingly
important factors in determining whether software will be accepted by users and
achieve market success. UX designs are based on the types of input/output or interaction
devices and must comply with their characteristics. Compared to desktop computer
systems, Android systems have different interaction devices and modalities. If a desktop’s
UI designs are copied indiscriminately, an Android device will present a terrible UI
and unbearable UX, unacceptable to users. In addition, with greater expectations
for compelling user experiences, developers must be more meticulous and careful
in designing system UIs and UXs, making them comply with the characteristics of
embedded applications.

This chapter first introduces the general GUI design method for desktop systems and
then shows how designing UIs for embedded systems is different. The aim is to help you
quickly master general methods and principles of GUI design for Android applications.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

2

Characteristics of Interaction Modalities of Android
Devices
A general-purpose desktop computer has powerful input/output (or interaction)
devices such as a large, high-resolution screen, a full keyboard and mouse, and diverse
interaction modalities. Typical desktop computer screens are at least 17 inches, with
resolutions of at least 1,280 × 960 pixels. The keyboard is generally a full keyboard or
an enhanced keyboard. On full keyboards, letters, numbers, and other characters are
located on corresponding keys—that is, full keyboards provide keys corresponding to all
characters. Enhanced keyboards have additional keys. The distance between keys on a
full keyboard is about 19 mm, which is convenient for users to make selections.

The GUI interactive mode of desktop computers based on screen, keyboard, and
mouse is referred to as WIMP (windows, icons, menus, and pointers), which is a style of
GUI using these elements as well as interactive elements including buttons, toolbars, and
dialog boxes. WIMP depends on screen, keyboard, and mouse devices to complete the
interaction. For example, a mouse (or a device similar to a mouse, such as a light pen) is
used for pointing, a keyboard is used to input characters, and a screen shows the output.

In addition to screens, keyboards, mice, and other standard interaction hardware,
desktop computers can be equipped with joysticks, helmets, data gloves, and other
multimedia interactive devices to achieve multimedia computing functions. By installing
cameras, microphones, speakers, and other devices, and by virtue of their powerful
computing capabilities, users can interact with desktop computers in the form of voice,
gestures, facial expressions, and other modalities.

Desktop computers are also generally equipped with CD-ROM/DVDs and other
large-capacity portable external storage devices. With these external storage devices,
desktop computers can release software and verify ownership and certificates through
CD/DVD.

As a result of the embeddability and limited resources of embedded systems, as well
as user demand for portability and mobility, Android systems have interaction modalities,
methods, and capabilities that are distinct from those of desktop systems. Due to these
characteristics and conditions, interaction on Android systems is more demanding and
more difficult to achieve than it is on desktop systems.

The main differences between Android devices and desktop computers are
described next.

Screens of Various Sizes, Densities, and Specifications
Instead of large, high-resolution screens like those on desktop computers, Android device
screens are smaller and have various dimensions and densities measured in dots per
inch (DPI). For example, the K900 smartphone’s screen is 5.5 inches with a resolution of
1920 ×1080 pixels, and some smartphone screens are only 3.2 inches.

The aspect ratio of Android device screens is not the conventional aspect ration of
16:9 or 4:3 used by desktop computers. If Android devices adopted the interaction mode
of desktop computers, many problems would result, such as a blurry display and errors in
selecting targets.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

3

Keypads and Special Keys
Desktop computers have full keyboards, where a key corresponds to every character and
the generous distance between keys makes typing convenient. If an Android device has a
keyboard, it’s usually a keypad instead of the full keyboard. Keypads have fewer keys than
full keyboards; several characters generally share one key. A keypad’s keys are smaller
and more tightly spaced than on full keyboards, making it harder to select and type
characters. As a result, keypads are less convenient to use than full keyboards. In addition,
some keypads provide special keys that are not found on standard full keyboards, so users
must adjust their input on the Android device.

Generally speaking, on Android devices, keys and buttons are a unified concept.
Whether you press a button or a key, the action is processed as a keyboard event
with a uniform numbering scheme. Keyboard events in Android have corresponding
android.view.KeyEvent classes. Figure 1-1’s button/key callouts correspond to the
event information listed in Table 1-1.

Figure 1-1. Keyboard and buttons of an Android phone

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

4

Table 1-1. Android Event Information Corresponding to Key and Button Events

Key/Button Key Code Another Name Key Event

Key ① in
Figure 1-1

24 KEYCODE_VOLUME_UP {action=0 code=24
repeat=0 meta=0
scancode=115 mFlags=8}

Key ② in
Figure 1-1

25 KEYCODE_VOLUME_DOWN {action=0 code=25
repeat=0 meta=0
scancode=114 mFlags=8}

Key ③ in
Figure 1-1

82 KEYCODE_MENU {action=0 code=82
repeat=0 meta=0
scancode=139 mFlags=8}

Key ④ in
Figure 1-1

No response

Key ⑤ in
Figure 1-1

4 KEYCODE_BACK {action=0 code=4 repeat=0
meta=0 scancode=158
mFlags=8}

Key ⑥ in
Figure 1-1

No response

A–Z 29–54 KEYCODE_A–KEYCODE_Z

0–9 7–16 KEYCODE_0–KEYCODE_9

Key ⑨ in
Figure 1-1

19 KEYCODE_DPAD_UP

Key 11 in
Figure 1-1

20 KEYCODE_DPAD_DOWN

Key 12 in
Figure 1-1

21 KEYCODE_DPAD_LEFT

Key 10 in
Figure 1-1

22 KEYCODE_DPAD_RIGHT { action=ACTION_DOWN,
keyCode=KEYCODE_DPAD_
RIGHT, scanCode=106,
metaState=0, flags=0x8,
repeatCount=0,

eventTime=254791,
downTime=254791,
deviceId=0, source=0x301 }

(continued)

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

5

Key/Button Key Code Another Name Key Event

Key 13 in
Figure 1-1

23 KEYCODE_DPAD_CENTER { action=ACTION_DOWN,
keyCode=KEYCODE_DPAD_
CENTER, scanCode=232,
metaState=0, flags=0x8,
repeatCount=0,

eventTime=321157,
downTime=321157,
deviceId=0, source=0x301 }

Key ⑦ in
Figure 1-1

5 KEYCODE_CALL { action=ACTION_DOWN,
keyCode=KEYCODE_
CALL, scanCode=231,
metaState=0, flags=0x8,
repeatCount=0,
eventTime=331714,

downTime=331714,
deviceId=0, source=0x301 }

Key ⑧ in
Figure 1-1

6 KEYCODE_ENDCALL

Table 1-1. (continued)

See help documents like that for android.view.KeyEvent for details. Table 1-1’s
contents are excerpts.

Touch Screens and Styluses, in Place of Mice
A touch screen is an input device covering a display device to record touch positions.
By using the touch screen, users can have a more intuitive reaction to the information
displayed. Touch screens are widely applied to Android devices and replace a mouse
for user input. The most common types of touch screens are resistive touch screens,
capacitive touch screens, surface acoustic wave touch screens, and infrared touch
screens, with resistive and capacitive touch screens being most often applied to Android
devices. Users can directly click videos and images on the screen to watch them.

A stylus can be used to perform functions similar to touch. Some styluses are
auxiliary tools for touch screens and replace fingers, helping users complete elaborate
pointing, selecting, line drawing, and other operations, especially when the touch screen
is small. Other styluses implement touch and input functions along with other system
components. With the first type of auxiliary tool styluses, users can touch and input
characters with fingers. But the second type of stylus is an indispensable input tool and is
used instead of fingers.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

6

Touch and styluses can perform most functions that mice typically do, such as click
and drag, but can’t achieve all the functions of mice, such as right-click and left-click/
right-click at the same time. When designing embedded applications, you should control
the interaction mode within the range of functions that touch screens or styluses can
provide and avoid operations that are not available.

Onscreen Keyboards
Onscreen keyboards, also known as virtual keyboards or soft keyboards, are displayed on
the screen via software. Users tap the virtual keys like they would tap the keys on physical
keyboards.

Few Multimodal Interactions
Multimodal interaction refers to human-computer interaction with the modes involving
the five human senses. It allows the user to interact through input modalities such as
speech, handwriting, and hand gesture. Because computing capability is limited, Android
devices generally do not adopt multimodal interaction.

Few Large-Capacity Portable External Storage Devices
Most Android devices do not have the CD-ROM/DVD drives, hard disks, or other large-
capacity portable storage peripherals such as solid-state drives (SSDs) that are usually
configured on desktop computers. These devices cannot be used on Android devices to
install software or verify ownership and certificates. However, Android devices usually
support microSD cards, which now have capacities of up to 128 GB; and more and
more cloud-based storage solutions such as Dropbox, One Drive, and Google Drive are
being developed for Android devices, with Android-compatible client apps available for
download from Google Play Store.

UI Design Principles for Embedded Systems
This section introduces interactive design issues and corrective measures to take when
transforming traditional desktop applications to embedded applications.

Considerations of Screen Size
Compared to desktop computer systems, Android systems have smaller screens with
different display densities and aspect ratios. Such screen differences result in many
problems when migrating applications from desktop systems to Android systems.
If developers reduce desktop system screens proportionally, the graphic elements
become too small to be seen clearly. In particular, it is often difficult to see the text and
icons, select and click some buttons, and place some application pictures on the screen
appropriately. If developers migrate application graphic elements to Android systems
without changing their sizes, the screen space is limited and can only accommodate a few
of the graphic elements.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

7

Size of Text and Icons
Another problem is the size of text and icons. When an application is reduced from a
typical 15-inch desktop screen to a typical 5- or 7-inch phone or tablet screen, its text is
too small to be seen clearly. In addition to the size of the text font, the text window (such
as a chat window) also becomes too small to read the text. Trying to reduce the font size
to suit smaller windows makes the text hard to recognize.

Therefore, the design of embedded systems should use as few text prompt messages
as possible; for example, replace the text with graphic or sound information. In addition,
where text is necessary, the text size should be adjustable. On Android, some predefined
fonts and icons are available in the res directory, such as drawable-hdpi, drawable-mdpi,
and drawable-xhdpi.

Clickability of Buttons and Other Graphical Elements
Similar to the problem of small text, buttons and other graphical elements also bring
interaction problems when migrating applications. On desktop systems, the size of
buttons is designed for mouse clicks, whereas on Android systems, the button size should
be suitable for fingers (on touch screens) or styluses. Therefore, when porting a Windows-
based app to support Android devices, the application UI needs to be redesigned; and
predefined drawables provided by the Android SDK should be selected in order to suit
fingers or styluses.

Developers should use bigger and clearer buttons or graphic elements to avoid
such problems and leave enough gap between graphic elements to avoid errors, which
are common when a small touch screen is used for selecting by fingers or styluses. In
addition, if an application has text labels near buttons, the labels should be part of the
clickable area connected with the buttons, so the buttons are easier to click.

Size of Application Windows
Many applications, such as games, use windows with fixed sizes instead of windows
that automatically adjust to fill any size screen. When these applications are migrated to
Android systems, because the screen’s aspect ratio does not match its resolution, part of
the picture may not be seen, or part of the area may not be reachable.

These problems may be more complicated on smartphones and tablets because
their screens have various densities such as small (426 dp × 320 dp), normal (470 dp ×
320 dp), large (640 dp × 480 dp), and extra large (960 dp × 720 dp). Their aspect ratios are
diverse and different from those commonly adopted by desktop systems.

One good way to solve such problems is to place the entire application window
proportionally on the smartphone or tablet screen, such as the large and extra-large
screens, which are typically 640 × 480 pixels and 960 × 720 pixels; or rearrange the UI to
make full use of the entire widescreen area; or make the entire app window a scrollable
view. In addition, you can allow users to use multiple touch fingers touch to zoom in,
zoom out, or move the application window on the screen.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

8

Considerations Arising from Touch Screens and Styluses
As mentioned earlier, touch screens and styluses are used on many Android systems to
perform some traditional mouse functions. Such input devices are called tap-only touch
screens. However, tap-only touch screens cannot provide all mouse functions. There is no
right button, and the current finger/stylus location cannot be captured when the screen is
not touched. So, desktop applications that allow functions such as cursor moves without
clicking, different operations for left-clicks and right-clicks, and so on, cannot be realized
on Android systems using touch screens and styluses.

The following sections talk about several problems often seen when migrating
applications from desktop systems to Android systems using tap-only touch screens.

Correctly Interpreting the Movement and Input of the Cursor
(Mouse) on Tap-Only Touch Screens
Many applications need mouse movement information when no mouse key is pressed.
This operation is called moving the cursor without clicking. For example, a lot of PC
shooting games1 simulate the user’s field of vision such that moving the mouse without
clicking is interpreted as moving the game player’s vision field; but the cursor should
always stay in the middle of the new vision field. However, an embedded device with
a tap-only touch screen does not support the operation of moving the cursor without
clicking. Once the user’s finger touches the screen, a tap event is triggered. When the user
moves a finger on the screen, a series of tap events at different positions is triggered; these
events are interpreted by the existing game code as additional interaction events (that is,
moving the aiming position of the game player’s gun).

The original interaction mode needs to be modified when migrating this type of
application to Android systems. For example, this problem can be modified into a click
operation: once the user touches the screen, the game screen should immediately switch
to the vision field, in which the cursor is located at the screen center. This way, the cursor
is always displayed at the screen center and not at the position the user actually touched.
One advantage you benefit from on mobile platforms is that most smartphones and
tablets on the market are equipped with sensors such as accelerometers, gyroscopes, GPS
sensors, and compasses, and they allow applications to read data from the sensors. As a
result, developers have more options than just touch input.

More generally, if an application needs to track the cursor’s movement from
point A to point B, the tap-only touch screen can define this input by the user clicking first
point A and then point B, without the need to track the movement between point A
and point B.

1A typical example is the game Counter-Strike (CS).

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

9

Setting Screen Mapping Correctly
Many applications run in full-screen mode. If such applications do not perfectly fill the
entire tap-only touch screen (that is, they are smaller or bigger than the screen), input
mapping errors result: there is a deviation between the display position and the click
position.

One situation that often occurs in migrating a full-screen application to a tap-only
touch screen with a low aspect ratio is the application window being centered on the
screen with blank space showing on both sides. For example, when a desktop application
window with a resolution of 640 × 480 (or 800 × 600) pixels is migrated to a tap-only touch
screen with a resolution of 960 × 720 (or 1280 × 800, a WXGA on Dell Venue 8) pixels, it
appears on the screen as shown in Figure 1-2. The resulting mapping errors cause the app
to incorrectly respond to user interaction. When the user taps the position of the yellow
arrow (the target), the position identified by the application is the point where the red
explosion icon is located. These kinds of errors also occur when the user taps a button.

Figure 1-2. Screen-mapping errors due to a low aspect ratio

You should consider the position-mapping logic and take this blank space into
consideration, even if the blank space is not part of the migrating application’s window.
By making these changes, the tap-only touch screen can map the touch position correctly.

Another situation occurs when the desktop full-screen window is migrated to a
tap-only touch screen with a higher aspect ratio. The height of the original application
window does not fit on the tap-only touch screen, and mapping errors occur in the
vertical direction instead of the horizontal direction.

Figure 1-3 shows the original application window filling the screen horizontally
but not vertically on a tap-only touch screen with a higher aspect ratio. Here, when the
user taps the position of the yellow arrow (the target), the position identified by the
application is the point where the red explosion icon is located. These errors are caused
by the difference in shape between the physical display and the application window.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

10

One solution is to ensure that the OS accurately maps the tap-only touch screen
to the entire visible area of the screen. The OS provides special services to complete
the screen stretching and mouse position mapping. Another solution is to consider, at
the beginning of application development, allowing configuration options to support
preconfigured display densities and aspect ratios provided by the Android SDK, such as
screens with a resolution of 640 × 480, 960 × 720, or 1,080 × 800 pixels. This way, if the
final dimension deformation is acceptable, the application may automatically stretch the
window to cover the whole screen.

How to Solve Hover-Over Problems
Many applications allow hover-over operations: that is, users can place the mouse over a
certain object or locate the mouse over an application icon to trigger an animated item or
display a tooltip. This operation is commonly used to provide instructions for new players
in games; but it is not compatible with the characteristics of tap-only touch screens,
because they do not support the mouse hover-over operation.

You should consider selecting an alternative event to trigger animations or tips. For
example, when the user touches the operation of applications, relevant animated themes
and tips are triggered automatically. Another method is to design an interface interaction
mode that temporarily interprets tap events as mouse hover-over events. For example, the
action of pressing a certain button and moving the cursor would not be interpreted as a
tap operation.

Figure 1-3. Screen-mapping errors due to a high aspect ratio

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

11

Providing Right-Click Functionality
As mentioned before, tap-only touch screens generally do not support right-click
operations on mice. A commonly used alternative is a delayed touch (much longer than
the tap time) to represent a right-click. This could result in the wrong operation occurring
if the user accidentally releases their finger too soon. In addition, this method cannot
perform simultaneous left-click and right-click (also known as double-click).

You should provide a user-interaction interface that can replace the right-click
function: for example, using double-click or installing a clickable control on the screen to
replace the right-click.

Keyboard Input Problems
As mentioned earlier, desktop computers use full keyboards, whereas Android systems
usually have much simpler keypads, button panels, user-programmable buttons, and
a limited number of other input devices. These limitations cause some problems when
designing embedded applications that are not seen in desktop systems.

Restricting the Input of Various Commands
The keyboard limitations on Android systems make it difficult for users to type
a large number of characters. Therefore, applications that require users to input
many characters, especially those depending on command input, need appropriate
adjustments when migrating to an Android system.

One solution is to provide an input mode that restricts the number of characters
by reducing the number of commands or selectively using convenient tools like menu
item shortcut keys. A more flexible solution is to create command buttons on the screen,
especially context-sensitive buttons (that is, buttons that appear only when needed).

Meeting Keyboard Demand
Applications need keyboard input, such as naming a file, creating personal data, saving
progress, and supporting online chat. Most applications tend to use the screen keyboard
to input characters, but the screen keyboard does not always run or show at the front of
the application interface, making character-input problems hard to solve.

One solution is to either design a mode without explicit conflict with the onscreen
keyboard application (for example, not using the full-screen default operation mode) for
applications, or provide an onscreen keyboard in the UI that appears only when needed.
Another simple way of minimizing keyboard input is to provide default text string values,
such as default names of personal data and default names of saved files, and allow users
to select by touching. To obtain other information required by the text string (for example,
prefix and suffix of file names), you can add a selection button that provides a list of
character strings you’ve established, from which the user can select. The name of a saved

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

12

file can also be uniquely obtained by combining various user information items extracted
from the screen or even using the date-time stamp. Some text input services (such as a
chat service) should be disabled if they are not the core functions of an application. This
will not cause any negative impact on the user experience.

Software Distribution and Copyright Protection Problems
Desktop computers are generally equipped with CD-ROM/DVD drives, and their
software is generally distributed via CD/DVD. In addition, for anti-piracy purposes,
CD/DVD installation usually requires users to verify the ownership of the disk or load
contents dynamically from the CD/DVD, especially video files. However, Android systems
(smartphones and tablets, for instance) generally do not have CD-ROM/DVD drives;
Android does support an external microSD card, but directly installing an application
from it is still not supported.

A good solution is to allow users to download or install applications via the Internet
instead of installing from CD/DVD. Consumers buy and install applications directly
from application stores such as the Apple App store, Google Play, and Amazon Appstore.
This popular software release model allows mobile developers to use certificates, online
accounts, or other software-based ways to verify ownership, instead of physical CD/
DVDs. Similarly, you should consider providing the option of placing content on an
online cloud service instead of requiring users to download videos and other content
from a CD/DVD.

Android Application Overview
The following sections describe the application file framework and component structure
of Android applications.

Application File Framework
Figure 1-4 shows the file structure after the generation of the HelloAndroid app (this is an
Eclipse screen shot).

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

13

Figure 1-4. Example file structure of an Android project

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

14

Even if you are not using Eclipse, you can directly access the project folder and see
the same file structure, as listed next:

E:\Android Dev\workspace\HelloAndroid>TREE /F
E:.
│ .classpath
│ .project
│ AndroidManifest.xml
│ ic_launcher-web.png
│ proguard-project.txt
│ project.properties
│
├─.settings
│ org.eclipse.jdt.core.prefs
│
├─assets
├─bin
│ │ AndroidManifest.xml
│ │ classes.dex
│ │ HelloAndroid.apk
│ │ resources.ap_
│ │
│ ├─classes
│ │ └─com
│ │ └─example
│ │ └─helloandroid
│ │ BuildConfig.class
│ │ MainActivity.class
│ │ R$attr.class
│ │ R$dimen.class
│ │ R$drawable.class
│ │ R$id.class
│ │ R$layout.class
│ │ R$menu.class
│ │ R$string.class
│ │ R$style.class
│ │ R.class
│ │
│ └─res
│ ├─drawable-hdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-ldpi
│ │ ic_launcher.png
│ │

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

15

│ ├─drawable-mdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ └─drawable-xhdpi
│ ic_action_search.png
│ ic_launcher.png
│
├─gen
│ └─com
│ └─example
│ └─helloandroid
│ BuildConfig.java
│ R.java
│
├─libs
│ android-support-v4.jar
│
├─res
│ ├─drawable-hdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-ldpi
│ │ ic_launcher.png
│ │
│ ├─drawable-mdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-xhdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─layout
│ │ activity_main.xml
│ │
│ ├─menu
│ │ activity_main.xml
│ │
│ ├─values
│ │ dimens.xml
│ │ strings.xml
│ │ styles.xml
│ │

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

16

│ ├─values-large
│ │ dimens.xml
│ │
│ ├─values-v11
│ │ styles.xml
│ │
│ └─values-v14
│ styles.xml
│
└─src
 └─com
 └─example
 └─helloandroid
 MainActivity.java

Let’s explain the features of this Android project file structure:

•	 src directory: Contains all source files.

•	 R.java file: Is automatically generated by the Android SDK
integrated in Eclipse. You do not need to modify its contents.

•	 Android library: A set of Java libraries used by Android
applications.

•	 assets directory: Stores mostly multimedia files and other files.

•	 res directory: Stores preconfigured resource files such as
drawable layouts used by applications.

•	 values directory: Stores mostly strings.xml, colors.xml, and
arrays.xml.

•	 AndroidManifest.xml: Equivalent to an application configuration
file. Contains the application’s name, activity, services, providers,
receivers, permissions, and so on.

•	 drawable directory: Stores mostly image resources used by
applications.

•	 layout directory: Stores mostly layout files used by applications.
These layout files are XML files.

Similar to general Java projects, a src folder contains all the .java files for a project;
and a res folder contains all the project resources, such as application icons (drawable),
layout files, and constant values.

The next sections introduce the AndroidManifest.xml file, a must-have of every
Android project, and the R.java file in the gen folder, which is included in other Java
projects.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

17

AndroidManifest.xml
The AndroidManifest.xml file contains information about your app essential to the
Android system, which the system must have before it can run any of the app’s code. This
information includes activities, services, permissions, providers, and receivers used in the
project. An example is shown in Figure 1-5.

Figure 1-5. The content of AndroidManifest.xml displayed in Eclipse

The file’s code is as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

http://schemas.android.com/apk/res/android

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

18

 <activity
 android:name=".MyMainActivity"
 android:label="@string/title_activity_my_main" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The AndroidManifest.xml file is a text file in XML format, with each attribute
defined by a name = value pair. For example, in Android, label = "@ string / title_
activity_my_main", label indicates the name of the Android application as
activity_my_main.

An element consists of one or more attributes, and each element is enclosed by the
start (<) and end (/>) tags:

<Type Name [attribute set]> Content </ type name>
<Type Name Content />

The format [attribute set] can be omitted; for example, the <intent-filter> ...
</ intent-filter> text segment corresponds to the activity content of the element, and
<action... />corresponds to the action element.

XML elements are nested in layers to indicate their affiliation, as shown in the previous
example. The action element is nested within the intent-filter element, which illustrates
certain aspects of the properties or settings of intent-filter. Detailed information about
XML is beyond the scope of this book, but many excellent XML books are available.

In the example, intent-filter describes the location and time when an activity
is launched and creates an intent object whenever an activity (or OS) is to execute an
operation. The information carried by the intent object can describe what you want to
do, which data and type of data you want to process, and other information. Android
compares the intent-filter data exposed by each application and finds the most
suitable activity to handle the data and operations specified by the caller.

Descriptions for the main attribute entries in the AndroidManifest.xml file are listed
in Table 1-2.

Table 1-2. The Main Attribute Entries in the AndroidManifest.xml File

Parameter Description

Manifest Root node that contains all contents in the package.

xmlns:android Contains the manifest of the namespace.

xmlns:android=http://schemas.android.com/apk/res/android.
Makes various standard properties usable in the file and provides
data to most elements.

(continued)

http://schemas.android.com/apk/res/android

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

19

Parameter Description

package Package of manifest application.

Application Contains the root node of the application-level component
manifest in the package. This element can also contain some global
and default properties for the application, such as label, icon,
theme, and necessary permissions. One manifest may contain zero
or one (no more than one) element.

android:icon Icon of the application.

android:label Name of the application.

Activity Name of the initial page to load when users start the application.
It is an important tool for user interaction. Most other pages are
displayed when other activities are performed or manifested by
other activity flags.

Note: Each activity must have a corresponding <activity> flag
whether it is used externally or in its own package. If an activity
has no corresponding flag, you cannot operate it. In addition, to
support a searching activity, an activity can contain one or several
<intent-filter> elements to describe the operations it supports.

android:name Default activity launched by the application.

intent-filter Is formed by manifesting the intent value supported by a
designated component. In addition to specifying different types
of values, intent-filter can specify properties for describing a
unique label, icon, or other information required by an operation.

Action Intent action supported by a component.

Category Intent category supported by a component. The default activity
launched by the application is designated here.

uses-sdk Related to the SDK version used by the application.

Table 1-1. (continued)

R.java
The R.java file is generated automatically when a project is created. It is a read-only file
and cannot be modified. R.java is an index file defining all resources of the project. For
example:

/* AUTO-GENERATED FILE. DO NOT MODIFY.

 */
package com.example.helloandroid;
public final class R {
 public static final class attr {
 }

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

20

 public static final class dimen {
 public static final int padding_large=0x7f040002;
 public static final int padding_medium=0x7f040001;
 public static final int padding_small=0x7f040000;
 }
 public static final class drawable {
 public static final int ic_action_search=0x7f020000;
 public static final int ic_launcher=0x7f020001;
 }
 public static final class id {
 public static final int menu_settings=0x7f080000;
 }
 public static final class layout {
 public static final int activity_my_main=0x7f030000;
 }
 public static final class menu {
 public static final int activity_my_main=0x7f070000;
 }
 public static final class string {
 public static final int app_name=0x7f050000;
 public static final int hello_world=0x7f050001;
 public static final int menu_settings=0x7f050002;
 public static final int title_activity_my_main=0x7f050003;
 }
 public static final class style {
 public static final int AppTheme=0x7f060000;
 }
}

You can see that many constants are defined in this code. The names of these
constants are the same as the file names in the res folder, which proves that the R.java
file stores the index of all resources of the project. With this file, it is more convenient
to use resources in applications and identify the resources required. Because this file
does not allow manual editing, you only need to refresh the project when adding new
resources to it. The R.java file automatically generates the index of all resources.

Definition File of Constants
The values subdirectory of the project contains a definition file for the strings, colors,
and array constants; the string constant definitions are in the strings.xml file. These
constants are used by other files in the Android project.

Eclipse provides two graphic view tabs, Resources and strings.xml, for the strings.xml
file. The Resources tab provides a structured view of the name-value, and the strings.xml
tab directly displays the contents of a text file format. The strings.xml file of the
HelloAndroid example is shown in Figure 1-6.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

21

Figure 1-6. IDE graphic view of the strings.xml file of HelloAndroid

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

22

The file content is as follows:

<resources>

 <string name="app_name">HelloAndroid</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>

</resources>

The code is very simple; it only defines four string constants (resources).

Layout Files
Layout files describe the size, location, and arrangement of each screen widget
(combination of window and gadget). A layout file is the “face” of the application. Layout
files are text files in XML format.

Widgets are visual UI elements, such as buttons and text boxes. They are equivalent
to controls and containers in the Windows system terminology. Buttons, text boxes, scroll
bars, and so forth are widgets. In the Android OS, widgets generally belong to the View
class and its descendant classes and are stored in the android.widget package.

An application has a main layout file corresponding to the application’s screen
display at startup. For example, the layout file and the main interface of the HelloAndroid
example are shown in Figure 1-7. When an application is created, Eclipse automatically
generates a layout file for the application’s main screen display. The file is located in the
project folder’s res\layout directory. The file name in the generated application projects
is specified in the next section: in this case, the source code file name corresponds to the
[Layout Name] key, so the file is named activity_main.xml.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

23

Figure 1-7. The main graphic layout and user interface

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

24

When you click the design window (in this case, activity_main.xml), you can see
the corresponding contents of the XML-formatted text file, as shown in Figure 1-8.

Figure 1-8. The main layout file of the HelloAndroid example

The contents of the file are as follows:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:padding="@dimen/padding_medium"
 android:text="@string/hello_world"
 tools:context=".MainActivity" />

</RelativeLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

25

In this code, there are several layout parameters:

•	 <RelativeLayout>: The layout configuration for the relative
position.

•	 android:layout_width: Customizes the screen width of the
current view; match_parent represents the parent container
(in this case, the activity) match; fill_parent fills the entire
screen; wrap_content, expressed as text fields, changes
depending on the width or height of this view.

•	 android:layout_height: Customizes the screen height occupied
by the current view.

Two other common parameters, not shown in this layout file, are as follows:

•	 android:orientation: Here means the layout is arranged
horizontally.

•	 android:layout_weight: Give a value for the importance
assigned to multiple views of a linear layout. All views are given a
layout_weight value; the default is zero.

Although the layout file is an XML file, you do not have to understand its format or
directly edit it, because the Android Development Tools and Eclipse provide a visual
design interface. You simply drag and drop widgets and set the corresponding properties
in Eclipse, and your actions are automatically recorded in the layout file. You can
see how this works when you walk though the application development example in
following sections.

Source Code File
When a project is built, Eclipse generates a default .java source code file that contains
the application basic runtime code for the project. It is located in the project folder under
the src\com\example\XXX directory (where XXX is the project name). The file name of the
generated application projects in this case is the source code file name that corresponds
to the [Activity Name] key, so the file is named MainActivity.java.

The content of MainActivity.java is as follows:

package com.example.flashlight;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.view.MenuItem;
import android.support.v4.app.NavUtils;

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

26

public class MyMainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_my_main, menu);
 return true;
 }
}

Component Structure of Applications
The Android application framework provides APIs for developers. Because the
application is built in Java, the first level of the program contains the UI needs of the
various controls. For example, views (View components) contain lists, grids, text boxes,
buttons, and even an embedded web browser.

An Android application usually consists of five components:

Activity•	

Intent receiver•	

Service•	

Content provider•	

Intent and intent filters•	

The following sections discuss each components a bit more.

Activity
Applications with visual UIs are implemented using activities. When a user selects an
application from the main screen or an application launcher, it starts an action or an
activity. Each activity program typically takes the form of a separate interface (screen).
Each activity is a separate class that extends and implements the activity’s base class. This
class is shown as the UI, consisting of View components responding to events.

Most programs have multiple activities (in other words, an Android application is
composed of one or more activities). Switching to another interface loads a new activity.
In some cases, a previous activity may give a return value. For example, an activity that
lets the user select a photo returns the photo to the caller.

When a user opens a new interface, the old interface is suspended and placed in the
history stack (interface-switching history stack). The user can go back to an activity that
has been opened in the history stack interface. A stack that has no historical value can be
removed from the history stack interface. Android retains all generated interfaces in the
history stack for running the application, from the first interface to the last one.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

27

An activity is a container, which itself is not displayed in the UI. You can roughly
imagine an activity as a window in the Windows OS, but the view window is not only for
displaying but also for completing a task.

Intent and Intent Filters
Android achieves interface switching through a special class called intent. An intent
describes what the program does. The two most important parts of the data structure are
the action and the data processed in accordance with established rules (data). Typical
operations are MAIN (activity entrance), VIEW, PICK, and EDIT. Data to be used in the
operation is presented using a Universal Resource Identifier (URI). For example, to view a
person’s contact information, you need to create an intent using the VIEW operation, and
the data is a pointer to the person’s URI.

A class associated with an intent is called an IntentFilter. An intent encapsulates
a request as an object; IntentFilter then describes what intentions an activity (or,
say, an intent receiver, explained in a moment) can process. In the previous example,
the activity that shows a person’s contact information uses an IntentFilter, and it
knows how to handle the data VIEW operation applied to this person. The activity in the
AndroidManifest.xml file using IntentFilter is usually accomplished by parsing the
intent activity switch. First, it uses the startActivity (myIntent) function to start the
new activity, next it systematically checks the IntentFilter of all installed programs,
and then it finds the activity that is the best match with the myIntent corresponding to
IntentFilter. This new activity receives the message from intent and then starts. The
intent-resolution process occurs in real time in the startActivity called. This process
has two advantages:

The activity emits only one •	 intent request and can reuse the
function of other components.

The activity can always be replaced by an equivalent new activity •	
of the IntentFilter.

Service
A service is a resident system program that has no UI. You should use a service for any
application that needs to run continuously, such as a network monitor or checking for
application updates.

The two ways of using a service are start-stop mode and bind-unbind mode. The
process flow chart and functions are shown in Table 1-3.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

28

When two modes are in mixed use—for example, one mode calls startService()
and other modes call bindService()—then only when both the stopService call and the
unbindService call occur will the service be terminated.

A service process has its own life cycle, and Android tries to keep a service process
that has been started or bound. The service process is described as follows:

If the service is the implementation process of the method •	
onCreate(), onStart, or onDestroy(), then the main process
becomes a foreground process to ensure that this code is not
stopped.

If the service has started, the value of its importance is lower •	
than that of the visible process but above all invisible processes.
Because only a few processes are visible to the user, as long as the
memory is not particularly low, the service does not stop.

If multiple clients have bound to the service, as long as any one of •	
the clients is visible to the user, that service is visible.

Broadcast Intent Receiver
When you want to execute some code associated with external events, such as have a task
performed in the middle of the night or respond to a phone ringing, use IntentReceiver.
Intent receivers have no UI and use NotificationManager to inform users that their
event has happened. An intent receiver is declared in the AndroidManifest.xml file
but can also be declared using Context.registerReceiver(). The program does not
have to run continuously to wait for IntentReceiver to be called. When an intent

Table 1-3. The Usage Model of a Service

Mode Start End Visit Notes

Start/
stop

Context.
startService()

Context.
stopService()

Even if the process
of the startService
call is ended, the
service is still there
until the process calls
stopService() or the
service causes its own
demise (stopSelf()
is called).

Bind/
unbind

Context.
bindService()

Context.
unbindService()

Context.
Service
Connection()

When calling
bindService(), the
process is dead; then
the service it binds to
must be ended.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

29

receiver is triggered, the system starts your program. Programs can also use
Context.broadcastIntent() to send their intent broadcast to other programs.

Android applications can be used to handle a data element or to respond to an
event (such as receiving text messages). Android applications are deployed to the
device together with an AndroidManifest.xml file. AndroidManifest.xml contains the
necessary configuration information, so the application is properly installed on the
device. AndroidManifest.xml also includes the necessary class names and the types
of events that can be handled by the application, as well as the necessary permissions
to run the application. For example, if an application needs to access the network—to,
say, download a file—the manifest file must be explicitly listed in the license. Many
applications may enable this particular license. This declarative security can help reduce
the possibility of damage to equipment from malicious applications.

Content Provider
You can think of content providers as database servers. A content provider’s task is to
manage persistent data access, such as a SQLite database. If the application is very
simple, you might not need to create a content-provider application. If you want to build
a larger application or need to build applications to provide data for multiple activities or
applications, you can use the content provider for data access.

If you want other programs to use their own programs’ data, a content provider
is very useful. The content-provider class implements a series of standard methods
that allows other programs to store and read data that can be processed by the content
provider.

Android Emulator
Android does not use the ordinary Java virtual machine (JVM); it uses the Dalvik virtual
machine (DVM) instead. The DVM and JVM are fundamentally different. The DVM takes
up less memory, is specifically optimized for mobile devices, and is more suitable for
mobile phones used in embedded environments. Other differences are as follows:

The general JVM is based on the stack-based virtual machine, but •	
the DVM is a register-based virtual machine. The latter is better
because applications can achieve maximum optimization based
on the hardware, which is more in line with the characteristics of
mobile devices.

The DVM can run multiple virtual machine instances simultaneously •	
in limited memory, so that each DVM application executes as a
separate Linux process. In the general JVM, all applications run in a
shared JVM, and therefore individual applications are not running
as separate processes. With each application running as a separate
process, the DVM can be prevented from closing all programs in the
event of the collapse of the virtual machine.

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

30

The DVM provides a less restrictive license platform than the •	
general JVM. The DVM and JVM support different generic code.
The DVM does not run standard Java bytecode, but rather Dalvik
executable format (.dex). Java code compilation of Android
applications actually consists of two processes. The first step is to
compile the Java source code into normal JVM executable code,
which uses the file-name suffix .class. The second step is to
compile the bytecode into Dalvik execution code, which uses the
file-name suffix .dex. The first step compiles the source code files
under the src subdirectory in the project directory into .class
files in the bin\class directory; and the second step moves the
files from the bin\class subdirectory to classes.dex files in
the bin directory. The compilation process is integrated into the
Eclipse build process; however, you can also use the command
line to compile manually.

Introducing Android Runtime (ART)
ART is an Android runtime that first became available in Google Android KitKat (4.4) as a
preview feature. It is also called Dalvik version 2 and is under active development in the
Android Open Source Project (AOSP). All smartphones and tablets with Android KitKat
keep Dalvik as the default runtime. This is because some OEMs still do not support ART
in Android implementations, and most third-party applications are still built based on
Dalvik and have not yet added support for the new ART.

As described by Google on the Android developer site, most existing apps should
work when running with ART. However, some techniques that work on Dalvik do not
work on ART. The differences between Dalvik and ART are shown in Table 1-4.

Table 1-4. Dalvik vs. ART Summary

Dalvik ART

Application APK package with DEX class file Same as Dalvik

Compile Type Dynamic compilation (JIT) Ahead-of-time compilation
(AOT)

Functionality Stable and went through
extensive QA

Basic functionality and stability

Installation Time Faster Slower due to compilation

App Launch Time Mostly slower due to JIT
compilation and interpretation

Mostly faster due to AOT
compilation

Storage Footprint Smaller Larger, with precompiled binary

Memory Footprint Larger due to JIT code cache Smaller

Chapter 1 ■ GUI DesIGn for anDroID apps, part 1: General overvIew

31

ART offers some new features to help with application development, performance
optimization, and debugging, such as support for the sampling profiler and debugging
features like monitoring and garbage collection. Transitioning from Dalvik to ART is
likely to take some time, and Dalvik and ART will both be provided in Android to allow
smartphone and tablet users to select and switch. However, future 64-bit Android will be
based on ART.

Summary
This chapter introduced the general GUI design method for desktop systems and then
showed how designing the UI and UX for embedded systems is different. You should now
understand the general methods and principles of GUI design for Android applications
and be ready to learn about the Android-specific GUI. The next chapter describes the
state transition of activities, the Context class, intent, and the relationship between
applications and activities.

33

Chapter 2

GUI Design for Android
Apps, Part 2:
The Android-Specific GUI

This chapter describes the state transitions of activities and discusses the Context class,
intent, and the relationship between applications and activities.

State Transitions of Activities
As mentioned in Chapter 1, the activity is the most important component. Activities
have their own state and transition rules, and they are the basis of what you need to
understand to write Android applications.

Activity States
When activities are created or destroyed, they enter or exit the activity stack. And as they
do, they transition among four possible states:

Active: An activity in the active state is visible when it is on the
top of the stack. Typically, it is the foreground activity that is
responding to user input. Android will ensure that it executes at
all costs. If required, Android will destroy stack activities further
down to ensure required resources for the active activity. When
another activity becomes active, this activity is paused.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

34

Paused: In some cases, an activity is visible but does not have
focus. At this moment, it is suspended. When the active activity
is fully transparent or is the non-full screen activity, the activity
below reaches this state. Paused activities are considered active
but do not accept user input events. In extreme cases, Android
will kill a paused activity to restore resources to the active
activity. When an activity is completely invisible, it becomes
stopped.

Stopped: When an activity is not visible, it is stopped. This
activity remains in memory to save all state and member
information. But when the system needs memory, this activity is
“taken out and shot.” When an activity stops, it is very important
to save the data and the current UI state. Once the activity exits
or is closed, it becomes inactive.

Inactive: When an activity is killed, it becomes inactive. Inactive
activities are removed from the activity stack. When you need to
use or display the activity, it needs to be started again.

The activity state transition diagram is shown in Figure 2-1.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

35

Figure 2-1. Android activity state transition diagram

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

36

State change is not artificial and is controlled entirely by the Android memory
manager. Android first closes applications that contain inactive activities, followed by
those with stopped activities. In extreme cases, it removes paused activities.

To ensure a flawless user experience, transition of these states is invisible to users.
When an activity returns to active status from the paused, stopped, or inactive state, the UI
must be nondiscriminatory. So, when an activity is stopped, it is very important to save the
UI state and data. Once an activity becomes active, it needs to recover the saved values.

Important Functions of Activities
The activity state transition triggers the function of the corresponding activity class
(that is, the Java method). Android calls these functions; developers do not have to
explicitly call them. They are called state-transition functions. You can override the state-
transition functions so they can complete their work at the specified time. There are also
some functions that are used to control the state of the activity. These functions constitute
the basis of activity programming. Let’s learn about those functions.

onCreate State-Transition Function
The onCreate function prototype is as follows:

void onCreate(Bundle savedInstanceState);

This function is run when the activity is first loaded. When you start a new program, its
main activity’s onCreate event is executed. If the activity is destroyed (OnDestroy, explained
later) and then reloaded into the task, its onCreate event participants are re-executed.

An activity is likely to be forced to switch to the background. (An activity switched
to the background is no longer visible to the user, but it still exists in the middle of a task,
such as when a new activity is started to “cover” the current activity; or the user presses
the Home button to return to the home screen; or other events occur in the new activity
on top of the current activity, such as an incoming caller interface.) If the user does not
view the activity again after a period of time, the activity may be automatically destroyed
by the system along with the task and process. If you check the activity again, the
onCreate event initialization activity will have to be rerun.

And sometimes you may want users to continue from the last open operating state
of the activity, rather than starting from scratch. For example, when the user receives a
sudden incoming call while editing a text message, the user may have to do other things
immediately after the call, such as saving the incoming phone number to a contact.
If the user does not immediately return to the text-editing interface, the text-editing
interface is destroyed. As a result, when the user returns to the SMS program, that user
may want to continue from the last edit. In this case, you can override the activity’s void
onSaveInstanceState (Bundle outState) events by writing the data you want to be
saved before the destruction of the state of activity or information through outState,
so that when the activity executes the onCreate event again, it transmits information
previously saved through the savedInstanceState. At this point, you can selectively use
the information to initialize the activity, instead of starting it from scratch.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

37

onStart State-Transition Function
The onStart function prototype is as follows:

void onStart();

The onStart function executes after the onCreate event or when the current activity
is switched to the background. When the user switches back to this activity by selecting
it from switch panel, if it has not been destroyed, and only the onStop event has been
performed, the activity will skip onCreate event activities and directly execute onStart
events.

onResume State-Transition Function
The onResume function prototype is as follows:

void onResume()

The onResume function is executed after the OnStart event or after the current
activity is switched to the background. When the user views this activity again, if it has
not been destroyed, and if onStop events have not been performed (activities continue to
exist in the task), the activity will skip onCreate and onStart event activities and directly
execute onResume events.

onPause State-Transition Function
The onPause function prototype is as follows:

void onPause()

The onPause function is executed when the current activity is switched to the
background.

onStop State-Transition Function
The onStop function prototype is as follows:

void onStop()

The onStop function is executed after the onPause event. If the user does not view
the activity again for some time, the onStop event of the activity is executed. The onStop
events are also executed if the user presses the Back key, and the activity is removed from
the current task list.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

38

onRestart State-Transition Function
The onRestart function prototype is as follows:

void onRestart()

After the onStop event is executed, if the activity and the process it resides in have
not been systematically destroyed, or if the user views the activity again, the onRestart
event(s) of the activity are executed. The onRestart event skips the onCreate event
activities and directly executes the onStart events.

onDestroy State-Transition Function
The onDestroy function prototype is as follows:

void onDestroy()

After an onStop event of the activity, if the user does not view the activity again, it is
destroyed.

The finish Function
The finish function prototype is as follows:

void finish()

The finish function closes the activity and removes it from the stack, which leads to
a call to the onDestroy() state-transition function. One way to resolve this is for the user
to navigate to the previous activity using the Back button.

In addition to the activity switch, the finish function triggers the activity’s state-
transition function, and the startActivity and startActivityForResult methods of the
context class (described in the next sections) also activate it. Functions such as Context.
startActivity also cause the construction of activity objects (that is, create new ones).

Typical causes of the triggers and corresponding functions are listed in Table 2-1.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

39

Functions such as Context.startActivity in Table 2-1 trigger three actions:
constructing new Activity objects, onCreate, and onStart. When an activity that is
moved from off screen places to the top of the screen display (that is, displayed in front of
the user), it generally only includes functions being called by onStart.

The Context Class
The Context class is an important Android concept to know. The class is inherited from
the Object function, whose inheritance is as follows:

java.lang.Object
 ↳ android.content.Context

The literal meaning of context is the text in the adjacent area, which is located in the
android.content.Context of the framework package. The Context class is a LONG type,
similar to the Handle handler in Win32. Context provides the global information interface
about the application environment. It is an abstract class, and its execution is provided by
the Android system. It allows access to resources and characterized types of applications.
At the same time, it can start application-level operations, such as starting activities and
broadcasting and receiving intents.

Many methods require the caller to be identified through a context instance. For
example, the first parameter of Toast is Context; and usually you use this to replace the
activity, which indicates that the caller’s instance is an activity. But other methods, such
as a button’s onClick (View view), cause errors if you use this. In this case, you may use

Table 2-1. Triggers and Their Functions

Typical Trigger Cause Corresponding Method
of Activity Executed

Explanations

Context.
startActivity[ForResult]()

Note: As long as the activity
is displayed and viewable on
the screen, this method will be
called.

new Activity()

onCreate() Completes the constructor
function, Saves the activity
object to the application
object, and initializes the
various controls (such as
View).

onStart() Similar to View.onDraw().

Activity.finish() onDestroy() Completes the constructor
function, such as removing
the activity object from
the application.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

40

ActivityName.this to solve the problem, because the class implements the context of
several major Android-specific models like activities, services, and broadcast receivers.

If the parameter—especially the constructor parameter of the class (such as
Dialog)—is the Context type, the actual parameters are typically activity objects,
generally [this]. For example, the Dialog constructor prototype is

Dialog.Dialog(Context context)

Here’s an example:

public class MyActivity extends Activity{
 Dialog d = new Dialog(this);

Context is the ancestor of most classes of Android, such as broadcasting, intents, and
so on, and it provides the interface of the global information application environment.
Table 2-2 lists the important subclasses of Context. You can find a detailed description in
the help documentation for the Android Context class.

Table 2-2. Important Subclasses of Context

Subclass Explanation

Activity User-friendly interface class

Application Base class that provides global application state maintenance

IntentService Base class used to handle asynchronous requests for the service
(expressed in an Intent way)

Service A component of the application that represents either a time-
consuming operation that has no interaction with the user or a task
that provides functionality for other application tasks

Classes are called offspring classes because they are direct or indirect subclasses of
Context and have an inheritance relationship like activities:

java.lang.Object
 ↳ android.content.Context
 ↳ android.content.ContextWrapper
 ↳ android.view.ContextThemeWrapper
 ↳ android.app.Activity

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

41

Context can be used for many operations in Android, but it main function is to load
and access resources. There are two commonly used contexts: the application context
and the activity context. The activity context is usually passed between a variety of classes
and methods, similar to the code of onCreate for an activity, as follows:

protected void onCreate(Bundle state) {
 super.onCreate(state);
 TextView label = new TextView(this); // Pass context to view control
 setContentView(label);
}

When the activity context is passed to the view, it means that view has a reference
pointed to an activity and references resources taken by the activity: view hierarchy,
resource, and so on.

You can also use the application context, which always accompanies the application’s
life but has nothing to do with the activity life cycle. The application context can be acquired
with the Context.getApplicationContext or Activity.getApplication method.

Java usually uses a static variable (singleton and the like) to synchronize states
between activities (between classes inside a program). Android’s more reliable approach
is to use the application context to associate these states.

Each activity has a context, which contains the runtime state. Similarly, an application
has a context that Android uses to ensure that it is the only instance of that context.

If you need to make a custom application context, first you must define a custom
class that inherits from android.app.Application; then describe the class in the
application’s AndroidManifest.xml file. Android automatically creates an instance of
this class. By using the Context.getApplicationContext() method, you can get the
application context inside each activity. The following example code gets the application
context in the activity:

class MyApp extends Application {
// MyApp is a custom class inherited from android.app.Application
 public String aCertainFunc () {

 }
}

class Blah extends Activity {
 public void onCreate(Bundle b){

 MyApp appState = ((MyApp)getApplicationContext());
// Get Application Context
 appState.aCertainFunc();
//Use properties and methods of the application

 }
}

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

42

Table 2-3. Commonly Used Methods for Obtaining Context

Function Prototype Function

abstract Context ContextWrapper.
getApplicationContext ()

Returns the current process corresponding
to the global context of a single application.

abstract ApplicationInfo
ContextWrapper.getApplicationInfo ()

Returns the context package corresponding
to the information of the entire application.

abstract ContentResolver
ContextWrapper.getContentResolver ()

Returns the content-resolver instance of
the corresponding application package.

abstract PackageManager
ContextWrapper.getPackageManager ()

Returns the package-manager instance for
finding all package information.

abstract String ContextWrapper.
getPackageName ()

Returns the current package name.

abstract Resources ContextWrapper.
getResources ()

Returns the resource instance of the (user)
application package.

abstract SharedPreferences
ContextWrapper.getSharedPreferences
(String name, int mode)

Finds and holds the contents of the
preference file whose name is specified
by the parameter name. Returns
the value of the shared preferences
(SharedPreferences) that you can find
and modify. When using a proper name,
only one instance of SharedPreferences is
returned to the caller, which means once
the changes are complete, the results are
shared with each other.

public final String Context.
getString (int resId)

Returns a localized string from the
application package’s default string table.

abstract Object ContextWrapper.
getSystemService (String name)

Returns processing system-level services
according to the name specified by the
variable name. The returned object classes
vary based on the name of the request.

You can get global information about the application environment using the
get function of Context. The main functions are shown in Table 2-3 and are either
ContextWrapper or direct context methods.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

43

Introduction to Intent
Intent can be used as a message-passing mechanism to allow you to declare intent to
take an action, usually with specific data. You can use intent to implement interaction
between components of any application on Android devices. Intent turns a group of
independent components into systems with one-to-one interactions.

It can also be used to broadcast messages. Any application can register a broadcast
receiver to listen and respond to these intent broadcasts. Intent can be used to create
internal, system, or third-party event-driven applications.

Intent is responsible for the description of an operation and the action data of the
application. Android is responsible for finding the corresponding component described
under the sub-intent, passing intent to the component being called, and completing the
component calls. Intent plays the decoupling role between the caller and the one who
is called.

Intent is a mechanism of runtime binding; it can connect two different components
in the process of running the program. Through intent, the program can request or
express willingness to Android; Android selects the appropriate components to handle
the request based on the contents of the intent. For example, suppose an activity wants
to open a web browser to view the content of a page; this activity only needs to issue a
WEB_SEARCH_ACTION request to Android. Based on the content request, Android will check
the intent filter declared in the component registration statement and find an activity for
a web browser.

When an intent is issued, Android finds one or more exact matches for the activity,
service, or broadcastReceiver as a response. Therefore, different types of intent
messages do not overlap and are not simultaneously sent to an activity or service,
because startActivity() messages can be sent only to an activity and startService()
intents can only be sent to a service.

The Main Roles of Intent
The main roles of intent are as follows.

Triggering a New Activity or Letting an Existing Activity
Implement the New Operation
In Android, intent directly interacts with the activity. The most common use of intent is
to bind application components. Intent is used to start, stop, and transfer application
activities. In other words, intent can activate a new activity or make an existing activity
perform a new operation. This can be accomplished by calling the
Context.startActivity() or Context.startActivityForResult() method.

To open a different interface (corresponding to an activity) in an application, you
call the Context.startActivity() function to pass an intent. Intent can either explicitly
specify a specific class to open or include an action required to achieve the goals. In the
latter case, the runtime will choose which activity to open, using a well-known process of
intent resolution in which the Context.startActivity() finds and starts a single activity
that best matches the intent.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

44

Triggering a New Service or Sending New Requests to Existing
Services
Opening a service or sending a request to an existing service is also completed by the
intent class.

Trigger BroadcastReceiver
You can send BroadcastIntent using three different methods: Context.sendBroadcast(),
Context.sendOrderedBroadcast(), and Context.sendStickyBroadcast().

Intent Resolution
The intent transfer process has two ways to match target consumers (such as another
activity, IntentReceiver, or service) with the respondents of the intent.

The first is explicit matching, also known as direct intent. When constructing an intent
object, you must specify the recipient as one of the intent’s component properties (by
calling setComponent (ComponentName) or setClass (Context, Class)). By specifying a
component class, the application notification starts the corresponding components. This
method is similar to an ordinary function call but varies in the reuse of the granularity.

The second is implicit matching, also known as indirect intent. The sender of the
intent does not know or care who the recipient is when constructing an intent object.
The attribute is not specified in the component intent. This intent needs to contain
sufficient information so that the system can determine which components to use out of
all those available to meet this intent. This method differs significantly from function calls
and helps to reduce coupling between the sender and receiver. Implicit matching resolves
to a single activity. If there are multiple activities that can implement a given action based
on particular data, Android selects the best one to start.

For direct intent, Android does not need to do parsing because the target component
is very clear. However, Android needs to resolve indirect intent. Through analysis, it maps
the indirect intent to the activity, IntentReceiver, or service that processes the intent.

The mechanism of intent resolution mainly consists of the following:

Looking for all •	 <intent-filter>s and the intent defined by those
filters, which are registered in AndroidManifest.xml

Finding and handling the component of the intent through •	
PackageManager (PackageManager can get information about the
application package installed on the current device)

Intent filters are very important. A non-declared <intent-filter> component
can only respond to explicit intent requests that the component name matches, but it
cannot respond to implicit intent requests. A declared <intent-filter> component can
respond to either explicit intent or implicit intent requests. When resolving implicit intent
requests, Android uses three attributes of the intent—action, type, and category—to make
the resolution. The specific resolution methods are described next.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

45

Action Test
A <intent-filter> element should contain at least one <action>, or no intent requests
can be matched to the <intent-filter>. If the action requested by an intent has at least
one match of an <action> in <intent-filter>, then the intent passed the action test of
this <intent-filter>.

If there is no description of a specific action type in the intent request or <intent-
filter>, then one of the two following tests applies:

If •	 <intent-filter> does not contain any action type, regardless
of what the intent requests are, there is no match to this
<intent-filter>.

If the intent request has no set action type, as long as the •	
<intent-filter> contains an action type, this intent request will
successfully pass the action test of <intent-filter>.

Category Test
For an intent to pass the category test, every category in the Intent must match a
category in the filter. When every category of intent requests have exact matches with the
<category> of one <intent-filter> of the components the intent request pass the test.
The excess <category> declaration of <intent-filter> does not cause the match failure.
Any <intent-filter> that does not specify a category test only matches intent requests
that the configuration is not set for.

Data Test
The <data> element specifies a data URI and data type of the intent request that you want
to receive. A URI is divided into three parts that match: scheme, authority, and path. The
URI data type and scheme of the Internet request set by setData() must be the same as
specified in <intent-filter>. If <intent-filter> also specifies authority or path, they
have to match to pass the test.

This decision process can be expressed as follows:

If the intent specifies the action, then the action list of the •	
<intent-filter> of the target component must contain this
action. Otherwise, it is not considered matched.

If the intent does not provide a type, the system gets the data •	
types from the data. And for some action methods, the target
component’s data-type list must contain the data type of the
intent. Otherwise it cannot be matched.

If the data for the intent is not the URI of the content, and the •	
category and intent also do not specify its type, the matching is
based on the data scheme of the intent (for instance, http: or
mailto:), and the intent’s scheme must appear in the scheme list
of the target component.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

46

If the intent specifies one or more categories, these categories •	
must all appear in the category list of the component. For
instance, if the intent contains two categories, LAUNCHER_
CATEGORY and ALTERNATIVE_CATEGORY, the target component
obtained by the parsing must contain at least these two
categories.

The Relationship between Applications
and Activities
Beginners tend to get confused between applications and activities—in particular,
the main activities (those that occur when the application starts). In fact, they are two
completely different objects. The behaviors, attributes, and so forth are not the same.
Following is a list of differences between applications and activities:

No matter how many times an application starts, as long as it is •	
not shut down, its value (that is, the object) is constant. It has only
one instance.

No matter where an application starts, as long as it is not closed, •	
its value (that is, the object) is constant. It has only one instance.

When an activity is not finished, its value (that is, the object) is •	
constant. Each time onStart() is called, the activity displays on
the screen front.

The objects that •	 startActivity starts are different each time. You
can say that startActivity actually contains new objects.

Although you cannot get a new activity object after •	
startActivity, the Android framework can send parameter
values (similar to the actual parameter of the function call)
when startActivity starts its corresponding activity objects.

Even more surprising is that Android can have an activity •	
coexist in multiple objects. When an activity is closed,
Android returns the results to the main activity started
through startActivity. As a result, it automatically calls the
onActivityResult() method that starts its activity object,
and random distribution can be avoided.

An application can have multiple objects of an activity.•	

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

47

The Basic Android Application Interface
In this section, you use an example to learn about Android development using the
Android SDK integrated in the Eclipse IDE. You create an application named GuiExam
using the Android SDK and learn about the Android interface design by following the
steps of the process.

GuiExam Application Code Analysis
This section provides analysis of the GuiExam sample application. First, let’s create the
GuiExam application using the Android SDK in Eclipse. For the application name, type
GuiExam. For the Build SDK, choose API 19, which includes the x86 instructions. As
shown in Figure 2-2, select the system default configurations for all other entries.

Figure 2-2. Initial setup when generating the GuiExam project

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

48

Figure 2-3. File structure of the GuiExam application

The file structure of the project is shown in Figure 2-3, and the user interface is
shown in Figure 2-4.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

49

The source code of the application’s only Java file (MainActivity.java) is shown in
Figure 2-5:

Figure 2-4. The application interface of GuiExam

5

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

50

You know the MainActivity.OnCreate() function is called when the event is
created. The source code of the function is very simple. The superclass function is called
in line 12, and the setContentView function is called in line 13. This function sets the UI
display of the activity. In the Android project, most of the UI is realized by the view and
view subclasses. View represents a region that can handle the event and can also render
this region.

The code in line 13 indicates that the view is R.layout.activity_main. The
auto-generated R.Java file under the gen directory of the project includes code such as
this (excerpted):

Line # Source Code
......
8 package com.example.guiexam;
9

Figure 2-5. The typical source codes in Java file MainActivity.java

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

51

10 public final class R {

26 public static final class layout {
27 public static final int activity_main=0x7f030000;
28 }
29 public static final class id {
30 public static final int menu_settings=0x7f080000;
31 }
32 public static final class string {
33 public static final int app_name=0x7f050000;
34 public static final int hello_world=0x7f050001;
35 public static final int menu_settings=0x7f050002;
36 public static final int title_activity_main=0x7f050003;
37 }

41 }

You can see that R.layout.activity_main is the resource ID of the main layout file
activity_main.xml. This file reads as follows:

Line# Source Code
1 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
2 xmlns:tools="http://schemas.android.com/tools"
3 android:layout_width="match_parent"
4 android:layout_height="match_parent" >
5
6 <TextView
7 android:layout_width="wrap_content"
8 android:layout_height="wrap_content"
9 android:layout_centerHorizontal="true"
10 android:layout_centerVertical="true"
11 android:padding="@dimen/padding_medium"
12 android:text="@string/hello_world"
13 tools:context=".MainActivity" />14
15 </RelativeLayout>

The first line of this code indicates that the content is a RelativeLayout class. By
checking the Android help documentation, you can see that the inheritance relationship
of RelativeLayout is

java.lang.Object
 ↳ android.view.View
 ↳ android.view.ViewGroup
 ↳ android.widget.RelativeLayout

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

52

Figure 2-6. Modifying the GuiExam layout to add a button

This class is indeed seen as a view class. This layout contains a TextView class, which
is also the offspring class of the view. Line 12 indicates that its text property is @string/
hello_world and its display text is the contents of the variable hello_world in strings.
xml: “Hello world!”

As a superclass of the layout, ViewGroup is a special view that can contain other
view objects or even ViewGroup itself. In other words, the ViewGroup object treats the
objects of other views or ViewGroups as member variables (called properties in Java).
The internal view objects contained in ViewGroup objects are called widgets. Because
of the particularity of the ViewGroup, Android makes it possible for a variety of complex
interfaces for applications to be automatically set.

Using Layouts as Interfaces
You can modify or design layouts as part of the application interface design. For example,
you can modify the activity_main.xml file as follows:

1. Change TextView’s Text property to “Type Here”.

2. Pick a button widget from the Form Widgets column, and
drop it into the activity_main screen. Set its Text property to
“Click Me”, as shown in Figure 2-6.

3. Drag a plain text widget from the Text Fields section of the left
column and drop it into the activity_main screen. Change
the Width property under the layout parameters branch to
fill_parent, and then drag plain text until it fills the entire
layout, as shown in Figure 2-7.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

53

Figure 2-7. Modifying the GuiExam layout to add a text-edit widget

Figure 2-8. The user interface of GuiExam after the layout has been modified

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

54

Figure 2-9. Interface structure of the activity

From these examples, you can see the general structure of the interface. The activity
set through setContentView (layout file resource ID) is: the activity contains a layout, and
the layout contains various widgets, as shown in Figure 2-9.

You may be wondering why Android introduced this layout concept. In fact, this
is a developer-favored feature of Android, compared to the programming interface of
Windows Microsoft Foundation Class (MFC). The layout isolates differences in screen
size, orientation, and other details on the device, which makes the interface screen
adaptive to a variety of devices. So, applications running on different device platforms
can automatically adjust the size and position of the widget without the need for user
intervention or code modification.

For example, the application you created can run on different Android phones,
tablets, and television device platforms without your needing to change any code. The
location and size of the widget are automatically adjusted. Even when you rotate a
phone 90 degrees, the interface for portrait or landscape mode is automatically resized
and maintained in its relative position. The layout also allows widgets to be arranged
according to local national habits (most countries arrange them from left to right, but
some countries arrange them from right to left). The details that need to be considered for
the interface design are all completed by the layout. You can imagine what would happen
if there were no layout classes—you would have to write code for each Android interface
layout for each device. The complexity of this level of work is unthinkable.

Using the View Directly as an Interface
Earlier you saw an interface structure and code framework for activities. You also saw
that most of the UI is implemented by the view and view subclasses. So, you can use the
setContentView function to specify a view object, instead of a layout. The prototype of
the setContentView function of the activity class includes the following.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

55

This function sets a layout resource as the interface of the activity:

void setContentView(int layoutResID)

The first type of the function sets an explicit view as the interface of the activity:

void setContentView(View view)

The 2nd type f the function sets an explicit view as the interface of the activity,
according to the specified format:

setContentView(View view, ViewGroup.LayoutParams params)

Here you work through an application example that uses the view directly as an
activity interface, using the second function setContentView()You can modify the code of
the MainActivity.java file as follows:

......
import android.widget.TextView;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this); // Create a TextView Object
that belongs to current Activity
 tv.setText("Hello My friends!"); // Set Display text of TextView
 setContentView(tv); // Set View as the main display
of the Activity
}

The application interface is shown in Figure 2-10.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

56

In this case you have TextView widgets, which are direct descendant classes of the
view, as the application interface; they are set directly in the setContentView function.
This way, the text displayed by the TextView becomes the output of the application
interface. To use the TextView class, you use an import android.widget.TextView
statement at the beginning of the file to import the package of the class.

Component ID
Now let’s go back and look at the application layout shown in Figure 2-6. The ID attribute
of the added text-edit widget in the layout is @ + id/editText1, and the button’s ID
property is @ + id/button1 (as shown in Figure 2-5). What does that mean?

Let’s look at the R.java file (excerpted):

Line # Source Code

8 package com.example.guiexam;
9

Figure 2-10. GuiExam sets the view directly as the interface

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

57

10 public final class R {

22 public static final class id {
23 public static final int button1=0x7f080001;
24 public static final int editText1=0x7f080002;
25 public static final int menu_settings=0x7f080003;
26 public static final int textView1=0x7f080000;
27 }
28 public static final class layout {
29 public static final int activity_main=0x7f030000;
30 }

43 }

Compared with the R.java file in the “GuiExam Application” section, you can see
that lines 23 and 24 are new; they are the resource ID number of the newly added button
and text-edit box. The type is int, which corresponds to the ID attribute values of these
widgets. From the R.java file, you can find the ID of these widgets—the static constant
R.id.button1 is the resource ID of the widgets (buttons) for which the ID attribute
value is @ + id/button1, and the static constant R.id.editText1 is the resource ID of
the widgets (text edit) for which the ID attribute value is @ + id/editText1. What’s the
reason for this? Let’s see.

Android components (including widgets and activities) need to use a value of type
int as a tag This value is the ID attribute value of the component tag. The ID attribute can
only accept a value of resources type. That is, the value must start with @, ; for example,
@ id/abc, @+id/xyz, and so on.

The @ symbol is used to prompt the parser for XML files to parse the name behind
the @. For example, for @string/button1, the parser reads the button1 value of this
variable from values/string.xml.

If the + symbol is used right after the @, it means that when you modify and save a
layout file, the system will automatically generate the corresponding type int variables
in R.java. The variable name is the value after the / symbol; for example, @+id/xyz
generates int xyz = value in R.java, where the value is a hexadecimal number. If the
same variable name xyz already exists in R.java, the systemdoes not generate a new
variable; instead, the component uses this existing variable.

In other words, if you use the @+id/name format and a variable named name exists in
R.java, the component will use the value of the variable as an identifier. If the variable
does not exist, the system adds a new variable, and the corresponding value for the
variable is assigned (not repeated).

Because the component’s ID attribute can be a resource ID, you can set any existing
resource ID value: for example, @drawable/icon, @string/ok, or @+string/. Of course,
you can also set a resource ID that already exists in the Android system, such as @id/
android:list, in which the android: modifier in the ID indicates the package where the
R class of the system is located (in the R.java file). You can enter android.R.id in the
Java code-editing zone, which lists the corresponding resource ID. For example, you can
set the ID property value this way.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

58

For the reason just described, you generally set the ID attributes of Android
components (including widgets, activities, and so on) to the @+id/XXX format. And you
use R.id.XXX to represent the component’s resource ID number in the program.

Buttons and Events
In the example in the section “Using Layouts as Interfaces,” you created an application
that includes Button, EditText, and other widgets, but nothing happens when the button
is clicked. This is because you did not assign a response to the click event. This section
first introduces Android events and the basics of the listener functions. You review and
further explore more advanced knowledge about events in future chapters covering
Android’s multithreaded design.

In Android, each application maintains an event loop. When an application starts,
it completes the appropriate initialization and then enters the event loop state, where
it waits for a user action such as clicking the touch screen, pressing a key (a button), or
some other input operation. User action triggers the program to generate a response to
the event; the system generates and distributes the corresponding event class to handle
it according to the event location, such as Activity or View. The callback methods are
integrated into an interface called the event listener. You can achieve the specified event
response by overriding the abstraction functions of the interface.

The scope of the event received by different classes is different for each class. For
example, the Activity class can receive keypress events but not touch events, whereas
the View class can receive both touch and keypress events. In addition, the event
attribute details received by different classes also vary. For example, the touch event
received by the View class consists of a number of touch points, coordinate values, and
other information. It is subdivided into pressing down, bouncing, and moving events. But
the Button class, which is a descendent of the View class, only detects a pressing action,
and the event does not provide the coordinates of touch points or other information.
In other words, Button processes the original event of the view and integrates all touch
events into one event that records whether it is clicked or not.

Most of the incident-response interfaces of the View class use Listener as a suffix, so
it is easy to remember their association with the event-listener interface. Table 2-4 shows
examples of a number of classes and their incident-response functions.

Table 2-4. Examples of Classes and Their Incident-Response Functions

Class Event Listener Interface and Function

Button Click onClick() function of the onClickListener Interface

RadioGroup Click onCheckChange() function of the
onCheckChangeListener Interface

View Drop-down list onTouch() function of the TouchListener interface

Input focus
changes

onFocusChange() function of the
onFocusChangeListener interface

Button onKey() function of the onKeyListener interface

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

59

The process to respond to events is as follows. First, define the implementation
class of your listener interface and override the abstract function. Second, call functions
such as set ... Listener(). Then set the implementation class of the custom monitor
interface to the event listener of the corresponding objects.

For example, you can modify the application source to execute an incident response.
There are many coding styles to implement a Java interface. The next section discusses
several ways in which the results of the code running these styles is the same.

Inner Class Listener
Modify the MainActivity.java code as follows (the bold text is added or modified):

Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.view.MenuItem;
6 import android.support.v4.app.NavUtils;
7 import android.widget.TextView;

8 import android.widget.Button; // Use Button class
9
10 import android.view.View; // Use View class
11 import android.view.View.OnClickListener; // Use View.OnClickListener

class
12 import android.util.Log;
13 // Use Log.d debugging function
 public class MainActivity extends Activity {
14 private int iClkTime = 1;
15
16 // Count of Button Click
17
 @Override
18 public void onCreate(Bundle savedInstanceState) {
19 super.onCreate(savedInstanceState);
20 setContentView(R.layout.activity_main);
21
22 Button btn = (Button) findViewById(R.id.button1);
23 // Obtain Button object based on the resource ID number
24 final String prefixPrompt ="This is No. ";
25 // Define and set the value of the variable passed
26 final String suffixPrompt ="time(s) that Button is clicked";

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

60

27 // Define and set the value of the variable passed
28 btn.setOnClickListener(new /*View.*/OnClickListener(){
29 // Set the event response class of Button's click
30
31 public void onClick(View v) {
32 Log.d("ProgTraceInfo",prefixPrompt + (iClkTime++) +

suffixPrompt);

 }
 });
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
}

On lines 18‒22, you get the corresponding objects based on the resource ID of
EditText and TextView, respectively. To use OnClickListener as an internal class, you
add the final modifier in front of the variable. In lines 23 and 24, as the response code
of the Button clicks, you first get the contents of EditText using EditText.getText().
Because the function returns a value of type Editable, you convert the type Editable to
the type String via the CharSequence.toString() function (CharSequence is a superclass
of Editable). Then you call the TextView.setText (CharSequence text) function to
refresh the TextView display.

In Android, the accessor functions of a class attribute usually start with set/get,
such as the read/write functions of the EditText contents:

Editable getText()
void setText(CharSequence text, TextView.BufferType type)

The interface of this application is shown in Figure 2-11; (a) is the start screen, (b) is
the screen after text is entered in the edit text box, and (c) shows the application screen
after the button is clicked.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

61

Figure 2-11. The interface of the application with a TextView, a Button, and an EditText

Using ImageView
Previous sections discussed typical uses of widgets and showed the basic concepts of
widget programming. The image is the foundation of multimedia applications and is thus
a major part of Android applications. This section introduces the use of the image/picture
display widget, ImageView. Through the examples in this section, you learn how to use
ImageView and add files to the project’s resources.

The following example was originally developed in the section when you created the
GuiExam application. Follow these steps to add a picture file to the project:

1. Copy the image file (in this case, morphing.png) into the
corresponding /res/drawable-XXX project directory (the
directory in which to store project files of different resolution
images), as shown in Figure 2-12.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

62

2. Open the project in Eclipse, and press the F5 key to refresh the
project. You can see the file added to the project in Package
Explorer (in this case, morphing.png), as shown in Figure 2-13.

Figure 2-12. Copy the image file into the project’s res directory

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

63

To place ImageView widgets in the layout, follow these steps:

1. Click to select the TextView widget of the “Hello world!”
project, and then press the Del key to remove the widget from
the layout.

2. In the editor window of layout.xml, locate the Image & Media
branch, and drag and drop the ImageView of this branch to the
layout file. When the Resource Chooser dialog box pops up,
click and select the Project Resource, select the just-imported
picture file under the project, and click OK to complete the
operation. This process is shown in Figure 2-14.

Figure 2-13. The Package Explorer window after the image is added

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

64

3. Adjust the size and position of the ImageView, and set its
properties. This step can use the default values shown
in Figure 2-15.

Figure 2-14. Place the ImageView widget in the layout.

Figure 2-15. The property settings of the ImageView

4. Save the layout file.

Normally, at this point, you would have to compile the Java code. However, in this
example, compiling is not necessary. Figure 2-16 shows the application’s interface.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

65

Exit Activities and Application
In the previous example, you can press the phone’s Back button to hide the activity,
but doing so does not close the activity. As you saw in the section “State Transitions of
Activities,” when the Back button is pressed, started activities only change from the active
state to the non-active state and remain in the system stack. To close these activities and
remove them from the stack, you should use the finish function of the Activity class.

However, closing activities does not mean the application process ends. Even if all
the components of the application (activity, service, broadcast intent receiver, and so on)
are closed, the application process continues to exist. There are two main ways to exit the
application process.

Figure 2-16. Application interface of the ImageView

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

66

One is the static function System.exit that Java provides to forcibly end the process;
another is the static function Process.killProcess (pid) provided by Android to
terminate the specified process ID (PID). You can pass the Process.myPid() static
function to get the application’s process ID.

You can use these methods for the example in the section “Using ImageView.”
The specific steps are as follows:

1. Add two buttons to the layout file with the Text property
“Close Activity” and “Exit Application” respectively and ID
attributes @+id/closeActivity and @+id/exitApplication
respectively. Adjust the buttons’ size and position, as shown
in Figure 2-17.

Figure 2-17. Add Close Activity and Exit Application buttons in the layout

2. Modify the source code of the MainActivity.java file as
follows (the bold code is either added or modified, and the
lines with strikethrough indicate deleted code):

Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 //import android.view.MenuItem;
6 //import android.support.v4.app.NavUtils;
7 import android.widget.Button; //Use Button class
8 import android.view.View; //Use View class

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

67

9 import android.view.View.OnClickListener;
// Use View.OnClickListenerClass

10 import android.os.Process;
// Use killProcess method

11 public class MainActivity extends Activity {
12 @Override
13 public void onCreate(Bundle savedInstanceState) {
14 super.onCreate(savedInstanceState);
15 setContentView(R.layout.activity_main);
16 Button btn = (Button) findViewById(R.

id.closeActivity);
17 // Get Button object of <Closed activity>
18 btn.setOnClickListener(new /*View.*/OnClickListener(){
19 // Set response code for Clicking
20 public void onClick(View v) {
21 finish();
 // Close main activity
22 }
23 });
24 btn = (Button) findViewById(R.id.exitApplication);
25 // Get Button object of <Exit Application>
26 // Set the response code to Clicking
27 public void onClick(View v) {
28 finish();
 // close main activity
29 Process.killProcess(Process.myPid());
 // Exit application process

30 }
31
32
33
34
35 });
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
}

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

68

In lines 5 and 6, you remove the unused import statements. You set the response
code for the Close Activity button in lines 16‒21 and set the response code for the
Exit Application button in lines 22‒28. The only difference is that the latter adds the
application-exit code Process.killProcess (Process.myPid ()). Both buttons use the
same finish() function of the Activity class to close the activity. The code in lines 7‒10
imports related classes.

The application interface is shown in Figure 2-18.

Figure 2-18. The Close Activity and Exit Application interface of the application

When you click the Close Activity or Exit Application button, the main interface of
the application is turned off. The difference is that the application process (com.example.
guiexam) does not quit for Close Activity; but for Exit Application, the process closes. This
is clearly shown in the Devices pane of the DDMS view in Eclipse, in which you can see a
list of processes on the target machine, as shown in Figure 2-19.

Chapter 2 ■ GUI DesIGn for anDroID apps, part 2: the anDroID-speCIfIC GUI

69

Summary
This chapter introduced Android interface design by having you create a simple
application called GuiExam. You learned about the state transitions of activities, the
Context class, intent, and the relationship between applications and activities. You also
saw how to use the layout as an interface by changing the layout file activity_main.
xml, and you saw how the button, event, and inner event listeners work. The next chapter
describes how to create an application with multiple activities using the activity-intent
mechanism and shows the changes needed in the AndroidManifest.xml file.

Figure 2-19. The process in DDMS when the Close Activity and Exit Application application
is running

71

Chapter 3

GUI Design for Android
Apps, Part 3: Designing
Complex Applications

In the previous chapter, you learned about Android interface design by creating a simple
application called GuiExam. The chapter also covered the state transition of activities, the
Context class, and an introduction to intents and the relationship between applications
and activities. You learned how to use a layout as an interface, and how button, event, and
inner event listeners work. In this chapter, you learn how to create an application with
multiple activities; examples introduce the explicit and implicit trigger mechanisms of
activities. You see an example of an application with parameters triggered by an activity
in a different application, which will help you understand the exchange mechanism for
the activity’s parameters.

Applications with Multiple Activities
The application in the previous example has only one activity: the main activity, which
is displayed when the application starts. This chapter demonstrates an application with
multiple activities, using the activity-intent mechanism, and shows the changes needed
in the AndroidManifest.xml file.

As previously described, an activity is triggered by an intent. There are two kinds of
intent-resolution methods: explicit match (also known as direct intent) and implicit match
(also known as indirect intent). A triggering activity can also have parameters and return
values. Additionally, Android comes with a number of built-in activities, and therefore a
triggered activity can come from Android itself, or it can be customized. Based on these
situations, this chapter uses four examples to illustrate different activities. For the explicit
match, you see an application with or without parameters and return values. For the
implicit match, you see an application that uses activities that come from the Android
system or are user defined.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

72

Triggering an Explicit Match of Activities with
No Parameters
Using explicit match without parameters is the simplest trigger mechanism of the activity
intent. This section first uses an example to introduce this mechanism and later covers
more complex mechanisms.

The code framework of the activity-intent triggering mechanism for explicit
matching includes two parts: the activities of the callee (being triggered) and those of the
caller (trigger). The trigger is not limited to activities; it can also be a service, such as a
broadcast intent receiver. But because you have only seen the use of activities so far, the
triggers for all the examples in this section are activities.

1. The source code framework for the activity of the callee does
the following:

a. Defines a class that inherits from the activity.

b. If there are parameters that need to be passed, then
the source code framework of the activity calls the
Activity.getIntent() function in the onCreate function
to obtain the Intent object that triggers this activity, and
then gets the parameters being passed through functions
like Intent.getData (), Intent.getXXXExtra (),
Intent.getExtras (), and so on.

c. Writes code for the normal activity patterns.

d. If the trigger returns values, does the following before
exiting the activity:

 i. Defines an Intent object

 ii. Sets data values for the intent with functions like
Intent.putExtras()

iii. Sets the return code of the activity by calling the
Activity.setResult() function

e. Adds the code for the activity of the callee in the
AndroidManifest.xml file.

2. The code framework for the activity of the callee does the
following:

a. Defines the Intent object, and specifies the trigger’s
context and the class attribute of the triggered activity.

b. If parameters need to be passed to the activity, sets the
parameters for the Intent object by calling functions of
the intent like setData(), putExtras(), and so on.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

73

c. Calls Activity.startActivity(Intent intent)
function to trigger an activity without parameters, or call
Activity.startActivityForResult(Intent intent,
int requestCode) to trigger an activity with parameters.

d. If the activity needs to be triggered by the return
value, then the code framework rewrites the
onActivityResult() function of the Activity class,
which takes different actions depending on the request
code (requestCode), result code (resultCode), and
intentions (Intent) values.

In step 2a, the class attribute of the triggered activity is used, which involves a Java
mechanism called reflection. This mechanism can create and return an object of the class
according to the class name. The object of the triggered activity is not constructed before
the triggering; therefore triggering the activity also means creating an object of that class
so that subsequent operations can continue. That is, triggering the activity includes the
operation of the newly created class objects.

The following two examples illustrate the code framework in detail. This section
describes the first one. In this example, the triggered activity belongs to the same application
as the activity of the trigger, and the triggered activity does not require any parameters and
does not return any values. The new activity is triggered via a button, and its activity interface
is similar to the interface of the example in the section “Exit Activities and Application.” in
Chapter 2, Figure 2-16. The entire application interface is shown in Figure 3-1.

Figure 3-1. The application interface with multiple activities in the same application
without parameters

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

74

After the application starts, the application’s main activity is displayed, as shown
in Figure 3-1(a). When the Change To The New Interface Without Parameters button is
clicked, the app displays the new activity, as shown in Figure 3-1(b). Clicking the Close
Activity button causes the interface to return to the application’s main activity, as shown
in Figure 3-1(c).

Create this example by modifying and rewriting the example in the GuiExam section
in Chapter 2, as follows:

1. Generate the corresponding layout file for the triggered
activity:

a. Right-click the shortcut menu in the res\layout
subdirectory of the application, and select New ➤ Other
Items. A New dialog box pops up. Select the \XML\XML
File subdirectory, and click Next to continue. In the New
XML File dialog box, enter the file name (in this case
noparam_otheract.xml), and click Finish. The entire
process is shown in Figure 3-2.

Figure 3-2. The layout file for the triggered activity

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

75

Note ■ the file name is the name of the layout file. You must use only lowercase letters
for compilation to be successful; otherwise you will get the error “Invalid file name: must
contain only a-z0-9_.”

You can see the newly added xxx.xml file (in this case, noparam_otheract.xml) in
the project’s Package Explorer, as shown in Figure 3-3.

Figure 3-3. Initial interface of the application’s newly added layout file

Note ■ the layout editor window on the right is still empty, and there is no visible
interface so far.

b. Select the Layouts subdirectory in the left palette, and
drag the layout control (in this case, RelativeLayout)
onto the window in the right pane. You immediately see
a visible (phone-screen shaped) interface, as shown in
Figure 3-4.

9

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

76

c. Based on the same methodology described in the section
“Using ImageView” in Chapter 2, place an ImageView and
a button in the new layout file. Set the ImageView widget’s
ID attribute to @+id/picture and the Button widget’s ID
attribute to @+id/closeActivity. The Text property is
“Close Activity,” as shown in Figure 3-5. Finally, save the
layout file.

Figure 3-5. Final configuration of the newly added layout file

Figure 3-4. Drag-and-drop layout for the newly added layout file

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

77

2. Add the corresponding Activity class for the layout file
(Java source files). To do so, right-click \src\com.example.XXX
under the project directory, and select New ➤ Class on the
shortcut menu. In the New Java Class dialog box, for Name, enter
the Activity class name corresponding to the new layout file
(in this case, TheNoParameterOtherActivity). Click Finish to
close the dialog box. The whole process is shown in Figure 3-6.

Figure 3-6. Corresponding class for the newly added layout file

Figure 3-7. Corresponding class and initial source code of the newly added layout

You can see the newly added Java files (in this case, TheNoParameterOtherActivity.
java) and the initial code, as shown in Figure 3-7.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

78

3. Edit the newly added .java file
(TheNoParameterOtherActivity.java). This class executes
the activity of the triggered activity (callee). Its source code is
as follows (bold text is added or modified):

Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle; // Use Bundle class
3 import android.app.Activity; // Use Activity Class
4 import android.widget.Button; // Use Button class
5 import android.view.View; // Use View class
6 import android.view.View.OnClickListener; // Use OnClickListener Class

7 public class TheNoParameterOtherActivity extends Activity {
8 // Define Activity subclass
9 @Override
10 protected void onCreate(Bundle savedInstanceState) {
11 // Define onCreate method
12 super.onCreate(savedInstanceState);
13 // onCreate method of calling parent class
14 setContentView(R.layout.noparam_otheract);
15 // Set layout file
16 Button btn = (Button) findViewById(R.id.closeActivity);
17 // Set responding code for <Close Activity> Button
18 btn.setOnClickListener(new /*View.*/OnClickListener(){
19 public void onClick(View v) {
 finish();
 // Close this activity
 }
 });
 }
 }

In line 7, you add the superclass Activity for the newly created class. The code
in lines 8 through 18 is similar to the application’s main activity. Note that in line 14,
the code calls the setContentView() function to set the layout for Activity, where the
parameter is the prefix name of the new layout XML file created in the first step.

4. Edit the code for the trigger (caller) activity. The trigger
activity is the main activity of the application. The source code
is MainActivity.java, and the layout file is activity_main.xml.
The steps for editing are as follows:

a. Edit the layout file, delete the original TextView
widgets, and add a button. Set its ID property to
@+id/goTONoParamNewAct and its Text property to
“Change to interface without Parameter,” as shown in
Figure 3-8.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

79

b. Edit the source code file of the trigger activity (in this
case, MainActivity.java) as follows (bold text is either
added or modified):

Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.content.Intent; // Use Intent class
6 import android.widget.Button; // Use Button class
7 import android.view.View.OnClickListener;
8 import android.view.View;

9 public class MainActivity extends Activity {
10 @Override
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 Button btn = (Button) findViewById(R.id.goTONoParamNewAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 public void onClick(View v) {
17 Intent intent = new Intent(MainActivity.this,

TheNoParameterOtherActivity.class);
18 startActivity(intent);
19 }
20 });
21 }

Figure 3-8. Layout configuration for the trigger activity

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

80

22 @Override
23 public boolean onCreateOptionsMenu(Menu menu) {
24 getMenuInflater().inflate(R.menu.activity_main, menu);
25 return true;
26 }
27 }

The code in line 17 defines an intent. The constructor function prototype in this case is

Intent(Context packageContext, Class<?> cls)

The first parameter is the trigger activity, in this case the main activity; this, because
it is used inside the inner classes, is preceded by class-name modifiers. The second
parameter is the class of the callee (being triggered) activity. It uses the .class attribute
to construct its object (all Java classes have the .class attribute).

Line 18 calls startActivity, which runs the intent. This function does not pass any
parameters to the triggered activity. The function prototype is

void Activity.startActivity(Intent intent)

5. Edit the AndroidManifest.xml file. Add descriptive
information for the callee activity (bold text is added) to
register the new Activity class:

Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.guiexam"
3 android:versionCode="1"
4 android:versionName="1.0" >
...
10 <application
11 android:icon="@drawable/ic_launcher"
12 android:label="@string/app_name"
13 android:theme="@style/AppTheme" >
14 <activity
15 android:name=".MainActivity"
16 android:label="@string/title_activity_main" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23 < activity android:name=".TheNoParameterOtherActivity"

android:label="the other Activity"/>
24 </application>
25
26 </manifest>

http://schemas.android.com/apk/res/android

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

81

You can also replace this XML code with the following methods:

Method 1:•	

 <activity android:name="TheNoParameterOtherActivity"
android:label=" the other Activity"> </activity>

Method 2:•	

<activity android:name=".TheNoParameterOtherActivity " />

Method 3:•	

<activity android:name=".TheNoParameterOtherActivity">
</activity>

The content of the android: name text field is the class name of the callee’s activity:
TheNoParameterOtherActivity.

Note that if a period (.) is added before the name of the Activity class android:
name, the compiler will give you the following warning at this line in the XML file (only a
warning, not a compile error):

Exported activity does not require permission

Triggering Explicit Matching of an Activity with
Parameters of Different Applications
The previous sections introduced triggering another activity without parameters in the
same application. The activity of the trigger is that the callee allows the exchange of
parameters: the trigger can specify certain parameters to the callee, and the callee can
return those parameter values to the trigger on exit. Additionally, the callee and the
trigger can be in completely different applications. This section shows an example of
an application with parameters triggered by an activity in a different application. This
example will help you understand the exchange mechanism for the activity’s parameters.

Use the same GuiExam application from Chapter 2. The interface is shown in
Figure 3-9.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

82

Figure 3-9. The interface of multiple activities in different applications

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

83

As shown in Figure 3-9, the trigger activity is in the GuiExam application, where there is a
variable to accept the weather condition entry. The interface in Figure 3-9(a) displays when
the GuiExam application is opened. Click the Enter New Interface To Modify The Weather box
to trigger the activity in HelloAndroid. When this activity starts, it displays the new weather
condition passed in the Set New Weather text box, as shown in Figure 3-9(b). Now enter a new
weather condition value in the Set New Weather, and click OK Change to close the trigger’s
activity. The new value returned from Set New Weather refreshes the Weather variable in the
trigger’s activity, as shown in Figure 3-9(d). If you click Cancel Change, it does the same thing
and closes the activity, but the value Weather does not change, as shown in Figure 3-9(f).

The process list for the executing application is shown in Figure 3-10 (displayed in
the DDMS window of the host machine in Eclipse).

Figure 3-10. Process list in DDMS for the multiple-activity application

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

84

Figure 3-10 shows that when the application starts, only the process for the trigger,
GuiExam, is running. But when you click Enter New Interface To Modify The Weather, the
new activity is triggered and the process for the new activity HelloAndroid runs, as shown
in Figure 3-10(b). When you click Confirm Change or Cancel Change, the triggered
activity turns off, but the HelloAndroid process does not quit, as shown in Figure 3-10(c).
Interestingly, even though the GuiExam trigger process exits, the HelloAndroid process to
which the triggered activity belongs is still in the running state.

The build steps are as follows:

1. Modify the GuiExam code of the trigger application:

a. Edit the main layout file (activity_main.xml in this case)
by deleting the original TextView widgets; then add three
new TextView widgets and a button. Set their properties
as follows: set the Text property for two TextViews to
“This interface is the activity of the Caller in GuiExam
application” and “Today’s Weather:”. Set the third
TextView’s ID property to @+id/weatherInfo. The Text
property of the button is “Enter New Interface to Change
Weather”, and its ID attribute is @+id/modifyWeather.
Adjust the size and position of each widget as shown in
Figure 3-11.

Figure 3-11. The main layout design for the GuiExam trigger application

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

85

b. Modify the content of MainActivity.java as shown here:

Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.widget.TextView; // Use TextView class
9 import android.content.Intent; // Use Intentclass

10 public class MainActivity extends Activity {
11 public static final String INITWEATHER = "Sunny; // /Initial Weather
12 public static final int MYREQUESTCODE =100;
13 //Request Code of triggered Activity
14 private TextView tv_weather;
15 // The TextView Widget that displays Weather info
16 @Override
17 public void onCreate(Bundle savedInstanceState) {
18 super.onCreate(savedInstanceState);
19 setContentView(R.layout.activity_main);
20 tv_weather = (TextView)findViewById(R.id.weatherInfo);
21 tv_weather.setText(INITWEATHER);
22 Button btn = (Button) findViewById(R.id.modifyWeather);
23 //Get Button object according to resource ID #
24 btn.setOnClickListener(new /*View.*/OnClickListener(){
25 //Set responding code click event
26 public void onClick(View v) {
27 Intent intent = new Intent();
28 intent.setClassName("com.example.helloandroid",
29 // the package (application) that the triggered Activity is located
30 "com.example.helloandroid.TheWithParameterOtherActivity");
31 //triggered class (full name)
 String wthr = tv_weather.getText().toString();
32 // Acquire the value of weather TextView
33 intent.putExtra("weather",wthr); // Set parameter being

passed to Activity
34 startActivityForResult(intent, MYREQUESTCODE);
35 //Trigger Activity
36 }
37 });
38 }

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

86

39
40 @Override
41 protected void onActivityResult(int requestCode, int resultCode,

Intent data) {
42 //Triggered Activity finish return
43 super.onActivityResult(requestCode, resultCode, data);
44 if (requestCode == MYREQUESTCODE) {
45 // Determine whether the specified Activity end of the run
 if (resultCode == RESULT_CANCELED)
46 { }
47 // Select "Cancel" to exit the code, this case is empty
48 else if (resultCode == RESULT_OK) {
49 // Select <OK> to exit code
50 String wthr = null;
51 wthr = data.getStringExtra("weather");
 // Get return value
 if (wthr != null)
 tv_weather.setText(wthr);
 // Update TextView display of weather content
 }
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
 }

The code in lines 23–28 triggers the activity with parameters in other applications.
Lines 23–25 establish the trigger intent, which uses the Intent.setClassName() function.
The prototype is

Intent Intent.setClassName(String packageName, String className);

The first parameter is the name of the package where the triggered activity is
located, and the second parameter is the class name (required to use the full name) of
the triggered activity. By using the startActivity ... function to trigger the activity, the
system can accurately locate the application and activity classes.

Line 28 attaches the parameter as additional data to the intent. Intent has a series of
putExtra functions to attach additional data and another series of getXXXExtra functions
to extract data from the intent. Additional data can also be assembled by the Bundle class.
Intent provides a putExtras function to add data and a getExtras function to get the
data. putExtra uses a property-value data pairing or variable name-value data pairing to
add and retrieve data. In this example, Intent.putExtra("weather", "XXX") saves the
data pair consisting of the name of the weather variable and the value “XXX” as additional
data for the intent.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

87

The code line with Intent.getStringExtra("weather") gets the value of the
weather variable from the attached intent data and returns the string type.

More details about these functions and the Bundle class can be found in the
documentation on the Android web site. They are not discussed any further here.

In lines 33–46, you rewrite the onActivityResult function of the Activity class.
This function is called when the triggered activity is closed. In line 36, you first determine
which activity is closed and returned according to the request code. Then you judge
whether it is returned by an OK or a Cancel click, based on the result code and the request
code. Lines 40–50 get the negotiated variable values from the returned intent. Line 42
updates the interface based on the return value of the variable. In this function, if the user
clicks Cancel to return, you do nothing.

2. Modify the code of the callee application HelloAndroid as
shown in Figure 3-12:

a. Using the method described in the section “Triggering
Explicit Matching of an Activity with Parameters of
Different Applications earlier in this chapter, add a layout
file (in this case named param_otheract.xml), and drag
and drop a RelativeLayout layout into the file.

b. Edit this layout file by adding two TextView widgets, an
EditText, and two Button widgets. Set their properties as
follows:

 · Text property for the two TextView widgets: “This
interface is the activity of the caller in HelloAndroid
application” and “Set new weather as:”

 · ID property for the EditText: @+id/editText_
NewWeather

 · Text property for the two Buttons: “Confirm Changes”
and “Cancel Changes”

 · ID attribute for the two Buttons: @+id/button_Modify
and @+id/button_Cancel

i

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

88

Then adjust their size and position.

c. As described in the section “Triggering Explicit
Matching of an Activity with Parameters of Different
Applications,” add the corresponding class (in this case,
TheWithParameterOtherActivity) for the new layout
file, as shown in Figure 3-13.

Figure 3-12. New layout design of the triggered (callee) application HelloAndroid

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

89

d. Edit the class file for the newly added layout file
(in this example, TheWithParameterOtherActivity.java).
The content is as follows:

Line# Source Code
1 package com.example.helloandroid;
2 import android.os.Bundle; // Use Bundle Class
3 import android.app.Activity; // Use Activity Class
4 import android.content.Intent; // Use Intent Class
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View Class

Figure 3-13. Add the corresponding class for the newly added layout file in the
HelloAndroid project

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

90

7 import android.view.View.OnClickListener; // Use OnClickListener Class
8 import android.widget.EditText; // Use EditText Class

9 public class TheWithParameterOtherActivity extends Activity {
10 private String m_weather;
11 // Save new weather variable
12 @Override
13 protected void onCreate(Bundle savedInstanceState) {
14 // Define onCreate method
15 super.onCreate(savedInstanceState);
16 // method of call onCreate Super Class
17 setContentView(R.layout.withparam_otheract); // Set layout file
18 Intent intent = getIntent();
19 // Get Intent of triggering this Activity
20 m_weather = intent.getStringExtra("weather");
21 // Get extra data from Intent
22 final EditText et_weather = (EditText)

findViewById(R.id.editText_NewWeather);
23 et_weather.setText(m_weather,null);
24 // Set initial value of "New Weather" EditText according to extra data of

the Intent
25 Button btn_modify = (Button) findViewById(R.id.button_Modify);
26 btn_modify.setOnClickListener(new /*View.*/OnClickListener(){
27 // Set corresponding code of <Confirm Change>
28 public void onClick(View v) {
29 Intent intent = new Intent();
30 // Create and return the Intent of Data storage
31 String wthr = et_weather.getText().toString();
32 // Get new weather value from EditText
33 intent.putExtra("weather",wthr);
34 // Put new weather value to return Intent
35 setResult(RESULT_OK, intent);
36 // Set <Confirm> and return data
37 finish(); // Close Activity
 }
 });
 Button btn_cancel = (Button) findViewById(R.id.button_Cancel);
 btn_cancel.setOnClickListener(new /*View.*/OnClickListener(){
 // Set corresponding code for <Cancel Change>
 public void onClick(View v) {
 setResult(RESULT_CANCELED, null);
 // Set return value for <Cancel>
 finish(); // Close this Activity
 }
 });
 }
 }

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

91

This code follows the framework of an activity. It sets the activity layout in line 11
such that the layout name is the same as the layout file name created in step 1 (no extension).
In lines 19–22, it first constructs an intent for the return and then adds extra data to the
Intent object as the return data. In line 21, it sets the return value of the activity and the
intent as a return data carrier. The prototype of the setResult function is

final void Activity.setResult(int resultCode, Intent data);

If resultCode is RESULT_OK, the user has clicked OK to return; and if it is
RESULT_CANCELLED, the user has clicked Cancel to return. In this condition, the return
data carrier intent can be null, which is set in line 27.

3. Modify AndroidManifest.xml, which is triggered by the
application, with the following code:

Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.helloandroid"
3 android:versionCode="1"
4 android:versionName="1.0" >
5
6 <uses-sdk
7 android:minSdkVersion="8"
8 android:targetSdkVersion="15" />
9
10 <application
11 android:icon="@drawable/ic_launcher"
12 android:label="@string/app_name"
13 android:theme="@style/AppTheme" >
14 <activity
15 android:name=".MainActivity"
16 android:label="@string/title_activity_main" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23 <activity
24 android:name="TheWithParameterOtherActivity">
25 <intent-filter>
26 <action android:name="android.intent.action.DEFAULT" />
27 </intent-filter>
28 </activity>
29 </application>
30
31 </manifest>

http://schemas.android.com/apk/res/android

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

92

4. Lines 24–29 are new. As in previous sections, you add an
additional activity description and specify its class name, which
is the class name of the triggered activity generated in the
second step. See the section “Triggering an Explicit Match of
Activities with No Parameters” for information about modifying
the AndroidManifest.xml file. Unlike in that section, you add
not only an activity and the documentation of its name attribute,
but also the intent-filter instructions and state to accept the
default actions described in the Action element and trigger this
Activity class. The activity cannot be activated in the absence
of the intent-filter description of the activity.

5. Run the callee application to register components of the
activity. The modifications to AndroidManifest.xml file are not
registered to the Android system until the callee application,
HelloAndroid, is executed once. Thus this is an essential step to
complete the registration of its included activity.

Implicit Matching of Built-In Activities
In the examples in the previous two sections, before you trigger the activity of the same
application or different applications through the Activity.startActivity() function or
the Activity.startActivityForResult() function, the constructor of the Intent objects
explicitly specifies the class, either through the .class attribute or through the class name
in a string. This way, the system can find the class to be triggered. This approach is called
explicit intent matching. The next example shows how to trigger a class that is not specified.
Instead, the system figures it out using an approach called implicit intent matching.

In addition, Android has a number of activities that have already been implemented,
such as dialing, sending text messages, and so on. Examples in this section explain how
you use can implicit matching to trigger these built-in activities. The application interface
is shown in Figure 3-14.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

93

The user start the GuiExam application and clicks the Enter Dialing Activity button on
the screen. It triggers dial-up activities that come with the system.

In this case, you modify the GuiExam project and use this application as a trigger.
The implicit match triggered activity is the dial-up activity. The steps to build this
example are as follows.

1. In the layout file (activity_main.xml) of the GuiExam
application, delete the original TextView widgets, add a
button, and set its ID attribute to @+id/goTODialAct and its
Text property to “Enter Dialing Activity”. Adjust its size and
position as shown in Figure 3-15.

Figure 3-14. The application interface when using implicit intent to trigger a built-in
activity

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

94

2. Modify the source code file (MainActivity.java) as follows:

Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View Class
7 import android.view.View.OnClickListener; // Use View.OnClickListener Class
8 import android.content.Intent; // Use Intent Class
9 import android.net.Uri; // Use URI Class

10 public class MainActivity extends Activity {
11 @Override
12 public void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
14 setContentView(R.layout.activity_main);
15 Button btn = (Button) findViewById(R.id.goTODialAct);
16 btn.setOnClickListener(new /*View.*/OnClickListener(){
17 // Set corresponding Code for Click Activity
18 public void onClick(View v) {
19 Intent intent = new Intent(Intent.ACTION_DIAL,

Uri.parse("tel:13800138000"));

Figure 3-15. Layout file of the application for the implicit match built-in activity

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

95

20 startActivity(intent); // Trigger corresponding Activity
21 }
22 });
 }
23
24 @Override
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity_main, menu);
27 return true;
28 }
 }

The code in line 16 defines an indirect intent (that is, intent of implicit match. It is
called an indirect intent because the class that needs to be triggered is not specified in
the constructor of the object; the constructor only describes the function of the class
that needs to be triggered to complete dialing. The constructor functions for the indirect
intent are as follows:

Intent(String action)
Intent(String action, Uri uri)

These functions require the classes (activities) that can complete the specified action
when they are called. The only difference between the two is that the second function
also comes with data.

This example uses the second constructor, which requires the activity that
can complete the dialing and extra data as a string of phone numbers. Because the
application does not specify the trigger type, Android finds the class to handle this action
(for example, Activity) from the registered class list and triggers the start of the event.

If multiple classes can handle the specified action, Android pops up a selection
menu, and users can select which one to run.

The parameter action can use the system-predefined string. In the previous
example, Intent.ACTION_DIAL is the string constant of ACTION_DIAL, which is defined by
the Intent class. Some system-predefined ACTION examples are shown in Table 3-1.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

96

The ACTION constant name is the first parameter used in the constructor of the
implicit-match intent. The value of the ACTION constant, used in the AndroidManifest.xml
statement of the activity that receives this action, is not used in this section, but is used in
the next section. You can find more information about predefined ACTION values in the
android.content.Intent help documentation.

Table 3-1. Some System-Predefined ACTION Constants

ACTION Constant
Name

Value Description

ACTION_MAIN android.intent.
action.MAIN

Start up as the initial activity of a task with
no data input and no returned output.

ACTION_VIEW android.intent.
action.VIEW

Display the data in the intent URI.

ACTION_EDIT android.intent.
action.EDIT

Request an activity to edit data.

ACTION_DIAL android.intent.
action.DIAL

Start a phone dialer, and use preset
numbers in the data to dial.

ACTION_CALL android.intent.
action.CALL

Initiate a phone call, and immediately use
the number in the data URI to initiate a call.

ACTION_SEND android.intent.
action.SEND

Start an activity to send specific data (the
recipient is selected by activity resolution).

ACTION_SENDTO android.intent.
action.SENDTO

Generally, start an activity to send a
message to a contact designated in the URI.

ACTION_ANSWER android.intent.
action.ANSWER

Open an activity to process an incoming
call. Currently it is handled by a local
phone-dialing tool.

ACTION_INSERT android.intent.
action.INSERT

Open an activity that can insert a new
project at the addition cursor in a specific
data field. When it is called as the child
activity, it must return the URI of the newly
inserted project.

ACTION_DELETE android.intent.
action.DELETE

Start an activity to delete a data port at the
URI position.

ACTION_WEB_SEARCH android.intent.
action.WEB_SEARCH

Open an activity, and run a web page
search based on the text in the URI data.

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

97

Implicit Match that Uses a Custom Activity
The previous example used implicit matching to trigger activities that come with the
Android system. In this section, you see an example of how to use an implicit match to
trigger a custom activity.

The configuration of this example application is similar to the one in the section
“Triggering Explicit Matching of an Activity with Parameters of Different Applications.”
The triggering application is hosted in the GuiExam project, and the custom activity
triggered by implicit match is in the HelloAndroid application. The interface is shown in
Figure 3-16.

Figure 3-16. The interface of implicit match that uses a custom activity

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

98

Figure 3-16(a) shows the interface when the GuiExam trigger application starts.
When you click the Display Activity Of Implicit Intent button, the system finds qualified
candidates for activities according to the requirements of the ACTION_EDIT action and
displays a list of events of these candidates (b). When the user-defined HelloAndroid
application is selected, the activity that can receive the ACTION_EDIT action as claimed in
the intent-filter in HelloAndroid application is displayed (c). When you click the Close
Activity button, the application returns to the original GuiExam activity interface (d).

Like the previous ones, this example is based on modifying the GuiExam project.
The steps are as follows:

1. Edit the main layout file (activity_main.xml). Delete the
original TextView widgets, and then add a TextView and a
button. Set the TextView’s Text property to “This application
is the Activity triggered by Caller using Implicit Intent”. Set
the button’s Text property to “Display Activity triggered by
Implicit Intent” and its ID attribute to @+id/goToIndirectAct,
as shown in Figure 3-17.

Figure 3-16. (continued)

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

99

2. Edit MainActivity.java as follows:

Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.content.Intent; // Use Intent Class

9 public class MainActivity extends Activity {
10 @Override
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 Button btn = (Button) findViewById(R.id.goToIndirectAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 // Set respond Code for Button Click event
17 public void onClick(View v) {
18 Intent intent = new Intent(Intent.ACTION_EDIT);
19 //Construct implicit Inent
20 startActivity(intent); // Trigger Activity
21 }
 });
22 }
23

Figure 3-17. The main layout design for the GuiExam trigger application

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

100

24 @Override
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity_main, menu);
27 return true;
 }
 }

The code in lines 16 and 17 defines the implicit intent and triggers the corresponding
activity, which is basically the same as the earlier code that triggers implicit activity, but
here it uses the constructor function of the intent that has no data.

3. Modify the HelloAndroid application that includes a custom
activity with the corresponding implicit intent:

a. Based on the method described in the section
“Triggering an Explicit Match of Activities with No
Parameters,” earlier in this chapter, add a layout file
(implicit_act.xml) to the project and drag and drop a
RelativeLayout layout into the file.

b. Edit the layout file, and add TextView, ImageView, and
Button widgets. Set the attributes as follows:

 · Text property of the TextView: “This interface is an
Activity of the HelloAndroid, which is responsible for
action triggered by the ACTION_EDIT”

 · ImageView: Set up exactly as in the section “Using
ImageView” in Chapter 2.

 · Text property of the Button: “Close Activity”

 · ID property of the Button: @+id/closeActivity.

Then adjust their respective size and position, as shown in Figure 3-18.

r

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

101

4. Similar to the process described in the section of this
chapter “Triggering an Explicit Match of Activities with No
Parameters,” add the corresponding class to the project for the
new layout file (TheActivityToImplicitIntent), as shown in
Figure 3-19.

Figure 3-18. Layout file for the custom activity of the corresponding implicit intent

y

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

102

5. Edit the class file for the newly added layout file
(TheActivityToImplicitIntent.java), which reads
as follows:

Line# Source Code
1 package com.example.helloandroid;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.widget.Button; // Use Button Class
5 import android.view.View; // Use View class
6 import android.view.View.OnClickListener; // Use View.OnClickListener class

Figure 3-19. New class for the custom activity of the corresponding implicit intent

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

103

7 public class TheActivityToImplicitIntent extends Activity {
8 @Override
9 public void onCreate(Bundle savedInstanceState) {
10 super.onCreate(savedInstanceState);
11 setContentView(R.layout.implicit_act);
12 Button btn = (Button) findViewById(R.id.closeActivity);
13 btn.setOnClickListener(new /*View.*/OnClickListener(){
14 // Set response code for <Close Activity> Click
15 public void onClick(View v) {
16 finish();
17 }
18 });
19 }
 }

6. Modify the AndroidManifest.xml file of the HelloAndroid
custom application containing the corresponding implicit
intent, as follows:

Line# Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2
3 package="com.example.helloandroid"
4
5 android:versionCode="1"
6
7 android:versionName="1.0" >
8
9 <uses-sdk
10 android:minSdkVersion="8"
11 android:targetSdkVersion="15" />
12
13 <application
14 android:icon="@drawable/ic_launcher"
15 android:label="@string/app_name"
16 android:theme="@style/AppTheme" >
17 <activity
18 android:name=".MainActivity"
19 android:label="@string/title_activity_main" >
20 <intent-filter>
21 <action android:name="android.intent.action.MAIN" />
22
23 <category android:name="android.intent.category.LAUNCHER" />
24 </intent-filter>
25 </activity>

http://schemas.android.com/apk/res/android

Chapter 3 ■ GUI DesIGn for anDroID apps, part 3: DesIGnInG Complex applICatIons

104

26 <activity
27 android:name="TheActivityToImplicitIntent">
28 <intent-filter>
29 <action android:name="android.intent.action.DEFAULT" />
30 <action android:name="android.intent.action.EDIT" />
31 <category android:name="android.intent.category.DEFAULT" />
32 </intent-filter>
33 </activity>
 </application>

 </manifest>

The code in lines 24–32 (in bold) gives the activity information for receiving the
implicit intent. Line 26 specifies that you can receive an android.intent.action.EDIT
action. This value corresponds to the constant value of the ACTION parameter
Intent.ACTION_EDIT of the trigger’s intent constructor function (the MainActivity class
of GuiExam). This is a predetermined contact signal between the trigger and the callee.
Line 27 further specifies that the default data type can also be received.

7. Run the application HelloAndroid, which now contains a
custom activity for the corresponding implicit intent and
registers its AndroidManifest.xml file in the system.

So far, three chapters have covered Android interface design. The simple GuiExam
application has demonstrated the state transition of an activity, the Context class, intents,
and the relationship between applications and activities. You also learned how to use a
layout as an interface and how the button, event, and inner event listener work. Examples
with multiple activities introduced the explicit and implicit trigger mechanisms for
activities. You saw an example of an application with parameters triggered by an activity
in a different application, and you now understand the exchange mechanism for the
activity’s parameters.

The application interface discussed so far is basically similar to a dialog interface.
The drawback of this mode is that it is difficult to obtain accurate touchscreen input,
making it difficult to display accurate images based on the input interface. The next
chapter, which covers the last part of Android interface design, introduces the view-based
interaction style interface. In this interface, you can enter information with accurate
touchscreen input and display detailed images, as required by many game applications.

105

Chapter 4

GUI Design for Android
Apps, Part 4: Graphic
Interface and Touchscreen
Input

So far, three chapters have been devoted to Android interface design. The application
interface discussed so far is similar to a dialog interface. The drawback is that it is difficult
to obtain accurate touchscreen input information, so it is hard to display accurate images
based on the input interface. This chapter introduces the view-based interaction style
interface. In this mode, you can enter information with accurate touchscreen input and
display detailed images, which happen to be requirements for lots of game applications.

Display Output Framework
Unlike the dialog box–style interface, which consists of TextView, EditText, Button,
and other window components, an interactive UI display directly uses a View class. This
section introduces the basic framework of drawing in the view (that is, displaying images
or graphics).

To display images and graphics in a view, you need to put drawing code into its
onDraw function. The onDraw function is called whenever images need to be redrawn in a
view, such as when the view is displayed when the application starts, when the front cover
object (such as a view, an event, or a dialog box) on top of the graphic view is moved
away, when the view from the bottom layer is moved into the top layer with the activity,
or in similar circumstances. You’re advised to put the drawing code in the View.onDraw
function, so you can ensure when the view needs to be displayed to the user. The view
window can also immediately be displayed in its total output; otherwise, certain graphic
view areas may not be refreshed or repainted.

Android drawing functions such as draw rectangle, draw oval, draw straight line, and
display text are usually integrated into the Canvas class. When the View.onDraw callback
executes, it brings with it a Canvas parameter that is used to get the Canvas object.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

106

Android uses the Paint class to draw a variety of graphics. Paint contains a variety of
brush attributes, such as color, fill style, font, and font size.

As described earlier in the book, the interface configuration style of the application
code generated in Eclipse is as follows: an activity includes layouts, and a layout
contains two layers of widget structures. For this reason, you set parameters for the
setContentView function in the onCreate function of the activity as the layout to achieve
this effect. To use the view-based interface, you need to change the default parameter
layout of the setContentView function to a custom view class.

Here is an example that illustrates the process. Modify the GuiExam example project
by using the following steps:

1. Using the same steps as in the section “Triggering an Explicit
Match of Activities with No Parameters” in Chapter 3, create a
new class (MyView), as shown in Figure 4-1.

Figure 4-1. Create a new class in the project

2. Edit the source code of the newly added class (MyView.java).
The content is shown next.

Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;

7 import android.graphics.Color;
8 import android.graphics.Paint.Style;
9 import android.graphics.Rect;

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

107

10 import android.graphics.Bitmap;
11 import android.graphics.BitmapFactory;
12 import android.graphics.Typeface;

13 public class MyView extends View {
14 MyView(Context context) {
15 super(context);
16 }

17 @Override
18 public void onDraw(Canvas canvas) {
19 Paint paint = new Paint();
20 paint.setAntiAlias(true); // Sett anti-aliasing
21 // paint.setColor(Color.BLACK); // Set Color Black
22 // paint.setStyle(Style.FILL); // Set Fill Style
23 canvas.drawCircle(250, 250, 120, paint); // Draw Circle

24 paint.setColor(Color.RED); // Set color red
25 paint.setStyle(Style.STROKE); // Set style-Stroke (no fill)
26 canvas.drawRect(new Rect(10, 10, 120, 100), paint); // draw rect

27 paint.setColor(0xff0000ff /*Color.BLUE*/);
28 String str = "Hello!";
29 canvas.drawText(str, 150, 20, paint); // display text

30 paint.setTextSize(50); // Set Text Size
31 paint.setTypeface(Typeface.SERIF); // Set Typeface: Serif
32 paint.setUnderlineText(true); // Set Underline Text
33 canvas.drawText(str, 150, 70, paint); // Display text

 Bitmap bitmap = BitmapFactory.

decodeResource(getResources(),R.drawable.ic_launcher);
 canvas.drawBitmap(bitmap, 0, 250, paint); // Display image
 }
 }

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

108

The code in line 13 adds extends View, which makes a custom class; in this
case, MyView inherits from the View category. Lines 13–16 create a custom class
constructor function that calls the superclass. This constructor function is essential to
prevent the following compilation error:

Implicit super constructor View() is undefined. Must explicitly invoke
another constructor

Lines 17–34 override the View.onDraw function to program various pieces of drawing
code. You construct a brush—that is, a Paint object—for drawing in line 16, and you set
it to eliminate jagged edges in line 17. Line 23 draws a circle (x = 250, y = 250); line 24 sets
the brush color to red, and so forth.

The prototype of the setColor function is

void Paint.setColor(int color);

In Android, a four-byte integer is used to represent a color, based on a, red, green,
and blue. This integer data format looks like this:

aa rr gg bb

From left to right, the first four bytes represent a, red, green, and blue values. For
example, blue is 0xff0000ff, as is also reflected in line 27. In addition, the Android Color
class also defines a constant for some colors, such as BLACK, RED, GREEN, BLUE, and so on,
as reflected in line 24.

The setStyle function sets the fill mode of the brush. The function prototype is

void Paint.setStyle(Paint.Style style)

The parameter style can take Paint.Style.STROKE (hollow fill), Paint.Style.FILL
(filled), or Paint.Style.FILL_AND_STROKE (solid and filled). These values are constants
defined in the Paint.Style class; their corresponding display styles are shown in Table 4-1.

Table 4-1. Fill Mode Parameters and Examples

Image Displayed Graphic Function Parameter Setting

Color=BLACK, Style=FILL

Color=BLACK, Style=STROKE

Color=BLACK, Style=FILL_AND_STROKE

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

109

3. Modify the main Activity class (MainActivity.java)
as follows:

Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 public class MainActivity extends Activity {
6 @Override
7 public void onCreate(Bundle savedInstanceState) {
8 super.onCreate(savedInstanceState);
9 // setContentView(R.layout.activity_main);
10 setContentView(new MyView(this));
11 }
12

The system automatically overrides the code in line 7 with the code in line 8. This allows
a custom view class instead of the default layout as the interface of the activity.

The application interface is as shown in Figure 4-2; (a) shows the entire interface,
and (b) is the enlarged section of the graphical display.

Figure 4-2. The interface of the display output framework of the GuiExam application

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

110

Drawing Framework for Responding to
Touchscreen Input
The previous example application only displays images/graphics and cannot respond
to touchscreen input. In this section, you see how to respond to touchscreen input and
control the view display.

View has an onTouchEvent function with the following function prototype:

boolean View.onTouchEvent(MotionEvent event);

When a user clicks, releases, moves, or does other interactive actions on the
touchscreen, a touch input event is generated. This touch input event triggers the call to
View.onTouchEvent. To allow users to process touchscreen input, you need to rewrite this
function. The response code needs to be written in the function’s body.

View.onTouchEvent has a parameter of type MotionEvent that defines the coordinate
position of the touch point, event type, and so on of the MotionEvent class. The event
types can be MotionEvent.ACTION_DOWN, MotionEvent.ACTION_MOVE, MotionEvent.
ACTION_UP, or equivalent, as defined constants in the MotionEvent class. The constants
represent interactive actions such as a touchscreen press, touchscreen move, touchscreen
pop-up, and so on.

As discussed earlier, whenever the view needs to be redrawn, the View.onDraw
function is called, so the drawing code needs to be put into the function. Most of the time,
the system can automatically trigger redraw events; but because users design their own
redraws, the system does not know when they need to be triggered. For example, perhaps
a user updates the display content, but the location, size, and levels of the content are not
changed; as a result, the system does not trigger the redraw event. In this situation, the
user needs to call the class function postInvalidate or invalidate of the View class to
proactively generate the redraw events. The function prototype is

void View.invalidate(Rect dirty)
void View.invalidate(int l, int t, int r, int b)
void View.invalidate()
void View.postInvalidate(int left, int top, int right, int bottom)
void View.postInvalidate()

The postInvalidate and invalidate functions with no parameters redraw the
entire view; the postInvalidate and invalidate functions with parameters redraw the
designated area (or certain area) of the view. The difference between postInvalidate
and invalidate with and without constants is that the first case requires an event loop
until the next issue to produce the redraw event, whereas the second one immediately
issues a redraw.

The following example illustrates the framework of drawing code that responds to
touchscreen input. The interface of the application is shown in Figure 4-3.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

111

The application starts in Figure 4-3(a). When the user clicks inside a circle (touches
the screen within the circle area), the color of the circle changes: it cycles through black,
red, green, and blue, as shown in Figure 4-3(a)–(d). If you click outside the circle, the
circle does not change colors.

Using the same example as in the earlier section, modify the custom view class
MyView.java as follows:

Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;
7
8 import android.graphics.Color;
9 import android.view.MotionEvent;
10 import java.lang.Math;

11 public class MyView extends View {
12 private float cx = 250; // Default X Coordinate of Circle
13 private float cy = 250; // Default Y Coordinate of Circle
14 private int radius = 120; // Radius
15 private int colorArray[] = {Color.BLACK, Color.RED, Color.GREEN,

 Color.BLUE };
16 // Defines an array of colors

Figure 4-3. The interface of a GuiExam input graphics framework that responds to the
touchscreen

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

112

17 private int colorIdx = 0; // Custom color subscript
 private Paint paint; // Define Paint
18
19 public MyView(Context context) {
20 super(context);
21 paint = new Paint(); // Initialization paintbrush
22 paint.setAntiAlias(true); // Setting anti-aliasing
23 paint.setColor(colorArray[colorIdx]);
 // Set the pen color
 }

24
25 @Override
26 protected void onDraw(Canvas canvas) {
27 canvas.drawCircle(cx, cy, radius, paint);
 }

28
29 @Override
30 public boolean onTouchEvent(MotionEvent event) {
31 float px = event.getX();
32 // defined the touch point in the X, Y coordinates
33 float py = event.getY();
34 switch (event.getAction()) {
35 case MotionEvent.ACTION_DOWN:
36 // Touch screen pressed
37 if (Math.abs(px-cx) < radius && Math.abs(py-cy) < radius){
38 // Touch location inside the circle
39 colorIdx = (colorIdx + 1) % colorArray.length;
40 paint.setColor(colorArray[colorIdx]);
41 // Set paintbrush color
42 }
43 postInvalidate();
 // Repaint
44 break;
45 case MotionEvent.ACTION_MOVE:
 // Screen touch and move
46 break;
47 case MotionEvent.ACTION_UP:
 // Screen touch unpressed
 break;
 }
 return true;
 }
 }

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

113

Lines 15 and 16 define an array of colors and color indices, and line 17 defines
paintbrush variables. Lines 20–22 of the constructor function complete the initialization
of the brush property settings. The reason you do not put the code for the paintbrush
property set in View.Ondraw is to avoid repeated calculations for each redraw. The only
work for the onDraw function is to display the circle.

In lines 28–46, you create the new touch input event response function
onTouchEvent. In lines 30 and 32, you first get the X, Y coordinates of the touch point
using the getX and getY functions of the MotionEvent class. Then you obtain the input
action type through the getAction function of the MotionEvent class in line 34, followed
by a case statement to complete the different input actions. The response to the action
of pressing the touchscreen is in lines 37–43. You determine whether the touch point is
within the circle in line 37. Then you modify the codes that set the colors and change the
pen color in lines 39–40. You call the postInvalidate function notification to redraw in
line 43 and provide it with the final finishing touch.

Multi-Touch Code Framework
Most Android devices support multi-touch touchscreens. The good news is that the
Android system software also provides multi-touch support. This section covers the
multi-touch code framework.

The touch event class MotionEvent has a getPointerCount() function that returns
the current number of touch points on the screen. The function prototype is

final int MotionEvent.getPointerCount();

You can also use the getX and getY functions discussed earlier to obtain the
coordinates of the touch point. The prototypes are as follows:

final float MotionEvent.getX(int pointerIndex)
final float MotionEvent.getX()
final float MotionEvent.getY(int pointerIndex)
final float MotionEvent.getY()

In the previous section, you got the coordinates of a single touch point using a function
with no parameters. The getX/getY functions with parameters are used to get the position
of the touch point in the multi-point touch situation, where the parameter pointerIndex is
the index number for the touch point. This is an integer number starting at 0.

Here is an example to illustrate the multi-touch programming framework. This
example is a two-point touch application that zooms a circle in and out. The application
interface is shown in Figure 4-4.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

114

The application’s launch interface is shown in Figure 4-4(a). The circle is always at
the center of the view, but the size of the circle (its radius) can be controlled by a two-point
touch. The center is the center of the view, not the center of the activity or the center of

Figure 4-4. The interface of the two-point touch zoom-in/zoom-out GuiExam graphic
application

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

115

the screen. The so-called two-point touchscreen means there are two touch points, or
two fingers moving on the screen at the same time, either in an expand gesture where the
circle becomes larger (b) or in squeeze gesture where the circle becomes smaller (c). The
code is as follows:

Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;
7
8 import android.view.MotionEvent;
9 import java.lang.Math;

10 public class MyView extends View {
11 private static final int initRadius = 120; // initial value ofthe radius
12 private float cx; // X coordinate of the circle
13 private float cy; // Y coordinate of the circle
14 private int radius = initRadius; // Set initial value of

 the radius
15 public float graphScale = 1; // Set Scale factor for one

 two-point touch move
16 private float preInterPointDistance; // Pre-distance of two touch

 points
17 private boolean bScreenPress = false; // The sign of the screen being

 pressed down
18 private Paint paint; // Define paintbrush

19 public MyView(Context context) {
20 super(context);
21 paint = new Paint(); // Initialize paintbrush
22 paint.setAntiAlias(true); // Set Anti Alias
23 }

24 @Override
25 protected void onDraw(Canvas canvas) {
26 cx = canvas.getWidth()/2; // Let circle center positioned

 at the screen of the screen
27 cy = canvas.getHeight()/2;
28 canvas.drawCircle(cx, cy, radius*graphScale, paint);
29 }

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

116

30 @Override
31 public boolean onTouchEvent(MotionEvent event) {
32 float px1, py1; // Define the X,Y coordinates of 1st touch

 point
33 float px2, py2; // Define the X,Y coordinates of 2nd touch

 point
34 float interPointDistance; //distance between two touch points
35 switch (event.getAction()) {
36 case MotionEvent.ACTION_DOWN: // Screen touch pressed
37 break;
38 case MotionEvent.ACTION_MOVE: // Screen touch move
39 if (event.getPointerCount() == 2) {
40 px1 = event.getX(0); //Get the X,Y coordinate of the

 first touch point
41 py1 = event.getY(0);
42 px2 = event.getX(1); // Get the X,Y coordinate of

 the second touch point
43 py2 = event.getY(1);
44 interPointDistance = (float) Math.sqrt((px6-px2)*(px6-

px2)+(py1 - py2)*(py1 - py2));
45 if (!bScreenPress){
46 bScreenPress = true;
47 preInterPointDistance = interPointDistance;
48 } else {
49 graphScale = interPointDistance
 // preInterPointDistance;
50 invalidate(); // Redraw graphics
51 }
52 } else {
53 bScreenPress = false;
54 radius = (int)(radius * graphScale);
55 // One downsize/enlarge circle end. Record final scale factor
56 }
57 break;
58 case MotionEvent.ACTION_UP: // Screen touch lift up
59 bScreenPress = false;
60 radius = (int)(radius * graphScale);
61 // One downsize/enlarge circle end. Record final scale factor
62 break;
63 }
64 return true;
 }
 }

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

117

This code defines a scaling factor graphScale for a two-point touch in line 15 and a
variable preInterPointDistance in line 16 to record the distance between the two touch
points. Line 17 defines the flag variable bScreenPress when the screen is pressed.

Lines 26 and 27 call getWidth and getHeight of the Canvas class in the onDraw
function to get the view’s width and height, and then allocate the center of the circle
in the center of the view. The advantage of this step is that, when the screen rotates 90
degrees, the circle remains in the center of the view, as shown in Figure 4-4(d). The
difference between these examples and the previous one is that this time the radius
of the circle being drawn is equal to the radius of the circle multiplied by the scaling
factor graphScale.

Lines 32–61 contain onDraw based on the modified example in the previous section.
Lines 38–56 are the response code for a touch-move activity. Line 3 determines whether
there are two touch points; if there are, you run code lines 40–51; otherwise, you run
lines 53–54. You set the flag bScreenPress to false to indicate when the two touch points
are first pressed, and then you record the final radius as equal to the current value of
the radius multiplied by the scaling factor graphScale. You get the position coordinates
of the two touch points in lines 40–43. Line 44 calculates the distance between the two
touch points. Line 45 determines whether it is the first press; if it is, lines 46 and 47 run,
and record the distance between the two touch points; otherwise, the code in lines 49–50
runs. Here you calculate the scaling factor based on the current distance between the
points and the distance in the previous movement. After this, the graphic is redrawn.

To handle the location of the flag bScreenPress, you execute the response code of
the screen touch-up activity in lines 58–60, which is similar to the non-two-point touch
code in lines 53 and 54.

Responding to Keyboard Input
Most Android devices have a number of hardware buttons, such as Volume +, Volume -,
Power, Home, Menu, Back, Search, and so on. Some Android devices are also equipped
with keyboards. Keyboards, including the device’s hardware buttons, are important input
methods for Android applications. Keyboard input corresponds to keyboard events,
named KeyEvent (also known as a pressing key event). In this section, you learn about the
methods to respond to keyboard input.

In Android, both the Activity and View classes can receive pressed-key events. Key
events trigger calls to the onKeyDown function of the Activity or View class. The function
prototype is

boolean Activity.onKeyDown(int keyCode, KeyEvent event);
boolean View.onKeyDown(int keyCode, KeyEvent event);

The keyCode parameter is the index code of the key that is pressed. Each key
in Android has a unique number, which is the keyCode. Some of the key codes were
described in Table 1-1. The key event, KeyEvent, contains properties related to buttons,
such as the frequency with which they are pressed. To handle key events, you need to
override the onKeyDown function and add your own response-handling code.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

118

Figure 4-5. Using keys to control the movement of the circle in the application interface

Interestingly, although the Activity and View classes can receive key events, the
view is often included in the activity. When the button is pressed, the event first sends
external activity; that is, the activity receives the event sooner. The following example
shows how you respond to the button press by rewriting the activity’s onKeyDown function.

This example shows how to use the arrow keys to move the circle in the application.
The application interface is shown in Figure 4-5.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

119

The Lenovo phone on which we are testing has no keypad, so we chose to run the
application on a virtual machine. The virtual machine has Left, Down, Right, and Up
keys to achieve these circle movements. The application startup interface is shown in
Figure 4-5(a). Pressing the Left, Down, Right, or Up button makes the circle move in the
corresponding direction. The interface examples are shown in Figure 4-5(b) through (e).

This application is based on the example, created at the beginning of this chapter
(Figure 4-1) and modified per the following procedure:

4. Modify the source code of MyView.java as follows:

Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;

7 public class MyView extends View {
8 private float cx = 250; // X coordinate of the circle
9 private float cy = 250; // Y coordinate of the circle
10 private static final int radius = 120; // Radius of the circle
11 private Paint paint; // define paint brush
12 private static final int MOVESTEP = 10; // the step

length for pressing direction key

13 public MyView(Context context) {
14 super(context);
15 paint = new Paint(); // Paint brush

initialization
16 paint.setAntiAlias(true); // Set Anti Alias
17 }

18 @Override
19 protected void onDraw(Canvas canvas) {
20 canvas.drawCircle(cx, cy, radius, paint);
21 }

22 ////// Self-define function:press key to move graphic

(circle) //////
23 public void moveCircleByPressKey(int horizon, int

vertical){

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

120

24 if (horizon < 0) // horizontal move
25 cx -= MOVESTEP;
26 else if (horizon > 0)
27 cx += MOVESTEP;
28 if (vertical < 0)
29 cy += MOVESTEP; // vertical move
30 else if (vertical > 0)
31 cy -= MOVESTEP;
32 postInvalidate(); // note to repaint
33 }
34 }

In lines 23–33, you add a function to the view class to move the image (the circle)
by pressing the horizon or vertical key. This function takes two arguments: horizon and
vertical. If horizon is less than 0, you decrease the X coordinate value of the circle,
and as a result, the circle moves to the left. If horizon is greater than 0, you increase the
X coordinate value of the circle, which moves the circle to the right. You do a similar
operation for the vertical parameters to move the circle up and down. Line 32 updates the
graphics routine with new parameters and trigger the view to redraw.

5. Modify the source code of the main activity class
MainActivity.java as follows:

Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.view.KeyEvent; // Key press event class

6 public class MainActivity extends Activity {
7 private MyView theView =null; // View object stored inside

 the variable

8 @Override
9 public void onCreate(Bundle savedInstanceState) {
10 super.onCreate(savedInstanceState);
11 theView = new MyView(this); // record the View class

 of the Activity
12 setContentView(theView);
13 }

14 @Override
15 public boolean onCreateOptionsMenu(Menu menu) {
16 getMenuInflater().inflate(R.menu.activity_main, menu);
17 return true;
18 }

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

121

19 @Override // Key down response function
20 public boolean onKeyDown(int keyCode, KeyEvent event) {
21 int horizon = 0; int vertical = 0;
22 switch (keyCode)
23 {
24 case KeyEvent.KEYCODE_DPAD_LEFT:
25 horizon = -1;
26 break;
27 case KeyEvent.KEYCODE_DPAD_RIGHT:
28 horizon = 1;
29 break;
30 case KeyEvent.KEYCODE_DPAD_UP:
31 vertical = 1;
32 break;
33 case KeyEvent.KEYCODE_DPAD_DOWN:
34 vertical = -1;
35 break;
36 default:
37 super.onKeyDown(keyCode, event);
38 }
39 if (!(horizon == 0 && vertical == 0))
40 theView.moveCircleByPressKey(horizon,vertical);
41 return true;
42 }
43 }

In this code, you want the Activity class to receive and respond to key-down events,
so you overwrite the onKeyDown function in lines 19–42 with the button-response code.
Although the response function for key buttons is located in the Activity class, the
display updates are to be implemented in the view MyView class, so you must make the
Activity class aware of its corresponding view object. To do so, you add a record-view
object variable theView in line 7. In lines 11 and 12, you let theView record this object
when constructing the view object.

In the key-down response function onKeyDown, you use a switchcase statement
(lines 22–38) and take different actions according to the different keys. The function’s
keyCode parameter specifies the key number of the key that is pressed. For example, the
code in lines 24–26 is the handling code for the Left key. It sets a horizontal flag to “left”
and then calls the self-defined function moveCircleByPressKey of the view class to move
the circle in lines 39 and 40. To allow other key-press-down events to be addressed, you
call the system’s default handler to deal with other keys in lines 36 and 37.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

122

Dialog Boxes in Android
There are three different ways to use dialog boxes in Android, as discussed in this section.

Using an Activity’s Dialog Theme
The Dialog class implements a simple floating window that can be created in an activity.
By using a basic Dialog class, you can create a new instance and set its title and layout.
Dialog themes can be applied to a normal activity to make it look similar to a dialog box.

In addition, the Activity class provides a convenient mechanism to create, save,
and restore dialogs, such as onCreateDialog(int), onPrepareDialog(int, Dialog),
showDialog(int), dismissDialog(int), and other functions. If you use these functions,
the activity can return the Activity object that manages the dialog through the
getOwnerActivity() method.

The following are specific instructions for using these functions.

onCreateDialog(int) Function
When you use this callback function, Android sets this activity as the owner of each
dialog box, which automatically manages the state of each dialog box and anchors it
to the activity. In this way, each dialog inherits the specific attributes of this activity.
For example, when a dialog box is opened, the menu button displays the option menu
defined for the activity. For example, you can use the volume keys to modify the audio
stream that the activity uses.

showDialog(int) Function
When you want to display a dialog box, you call the showDialog(intid) method and
pass an integer through this function call that uniquely identifies this dialog. When the
dialog box is first requested, Android calls onCreateDialog(intid) from the activity.
You should initialize this dialog box. This callback method is passed to the same ID that
showDialog(intid) has. When you create the dialog box, the object is returned at the end
of the activity.

onPrepareDialog(int, Dialog) Function
Before the dialog box is displayed, Android also calls the optional callback function
onPrepareDialog(int id, Dialog). If you want the properties to be changed every time
a dialog box is opened, you can define this method. Unlike the onCreateDialog(int)
function, which can only be called the first time you open the dialog box, this method is

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

123

called each time you open the dialog box. If you do not define onPrepareDialog(), then the
dialog remains the same as the last time it was opened. The dialog box’s ID and the dialog
object created in onCreateDialog() can also be passed to the function by this method.

dismissDialog(int) Function
When you are ready to close the dialog box, you can call dismiss() through this dialog
box method to eliminate it. If desired, you can also call dismissDialog(int id) method
from the activity. If you want to use the onCreateDialog(int id) method to retain the
state of your dialog box, then each time the dialog box is eliminated, the status of the
object of this dialog box object is kept in the activity. If you decide that you no longer
need this object or clear the state, then you should call removeDialog(intid). This
removes any internal object references, and even if the dialog box is being displayed, it is
eliminated.

Using a Specific Dialog Class
Android provides multiple classes that are expansions of the Dialog class, such as
AlertDialog, .ProgressDialog, .and so on. Each class is designed to provide specific
dialog box functions. The screen interface based on the Dialog class is created in all
activities that then call the specific class. So it does not need to be registered in the
manifest file, and its life cycle is controlled by the activity that calls the class.

Using Toast Reminders
Toasts are special, nonmodular, transient message dialog boxes, usually used in the
broadcast receiver and backgroundservices, and used to prompt user events..

Dialog Box Example
Of the dialog box methods discussed, if it is measured by how the implementation of the
function is done, the first function is the most powerful, followed by the second and third.
In terms of the degree of sophistication of the implementation code, the third method is
the simplest, and the first and the second are more complex.

The following example demonstrates the second method. See Android’s help
documentation and samples (in the samples directory located under the Android SDK
installation directory) to learn more about the other implementation methods.

The specific dialog box class that this sample application uses is the Builder inner
class of AlertDialog. When you press the Back button, a dialog box pops up, allowing you
to decide whether to exit the application. The application interface is shown in Figure 4-6.
Using the Android dialog box in this example will help you understand its usage.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

124

The application starts and displays the main activity interface, as shown in
Figure 4-6(a). When you press the device’s Back button, the Exit dialog box pops up, as
shown in Figure 4-6(b). When you click the Exit button, the application exits, and the
interface is also closed. When you click the Cancel button, the application returns to the
previous screen, similar to Figure 4-6(a).

Modify the source code of the activity class MainActivity.java to read as follows:

Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.view.KeyEvent; // Key event class
6 import android.app.Dialog; // Use Dialog class

Figure 4-6. The application interface with an Exit dialog box

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

125

7 import android.app.AlertDialog; // Use AlertDialog class
8 import android.content.DialogInterface; // Use DialogInterface interface

9 public class MainActivity extends Activity {
10 private MyView theView =null; // View objects stored inside

the variable
11 private AlertDialog.Builder exitAppChooseDlg = null; // Exit App

dialog box
12 private Dialog dlgExitApp = null;

13 @Override
14 public void onCreate(Bundle savedInstanceState) {
15 super.onCreate(savedInstanceState);
16 theView = new MyView(this); //View class of Record My Activity
17 setContentView(theView);

18 exitAppChooseDlg = new AlertDialog.Builder(this);
19 // Define AlertDialog.Builder object
20 exitAppChooseDlg.setTitle("Exit Selection");
21 // Define the title of the dialog box
 exitAppChooseDlg.setMessage("Confirm to exit application?");
22 // Define the display text of the dialog box
23 exitAppChooseDlg.setIcon(android.R.drawable.ic_dialog_info);
24 // Define the icon of the dialog box
25
26 // Set the leftmost button and click response class
27 exitAppChooseDlg.setPositiveButton("Exit", new DialogInterface.

OnClickListener() {
28 public void onClick(DialogInterface dialog, int which) {
29 dialog.dismiss(); // Close Dialog Box
 /*MainActivity.*/finish(); // Exit (main) Activity
30 System.exit(0); // Exit Application
31 }
32 });
33
34 // Set the rightmost button and click response class
35 exitAppChooseDlg.setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
36 public void onClick(DialogInterface dialog, int which)
 {
37 dialog.cancel(); // Close dialog box
 }
38 });
39 dlgExitApp = exitAppChooseDlg.create();
40 // Create dialog box exit object
41 }
42

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

126

 @Override
43 public boolean onCreateOptionsMenu(Menu menu) {
44 getMenuInflater().inflate(R.menu.activity_main, menu);
45 return true;
46 }
47
48 @Override //Key down response function
49 public boolean onKeyDown(int keyCode, KeyEvent event) {
50 int horizon = 0; int vertical = 0;
51 switch (keyCode)
52 {
53 case KeyEvent.KEYCODE_DPAD_LEFT:
54 horizon = -1;
55 break;
56 case KeyEvent.KEYCODE_DPAD_RIGHT:
57 horizon = 1;
58 break;
59 case KeyEvent.KEYCODE_DPAD_UP:
60 vertical = 1;
61 break;
62 case KeyEvent.KEYCODE_DPAD_DOWN:
63 vertical = -1;
64 break;
65 case KeyEvent.KEYCODE_BACK:
66 if (event.getRepeatCount() == 0) {
67 dlgExitApp.show();
68 // Display AlertDialog.Builder dialog box
69 }
70 break;
71 default:
72 super.onKeyDown(keyCode, event);
 }
 if (!(horizon == 0 && vertical == 0))
 theView.moveCircleByPressKey(horizon,vertical);
 return true;
 }
 }

Lines 11 and 12 define the AlertDialog.Builder class and its associated variable
for the Dialog class in the Activity class. You modify the onCreate function code in
lines 18–36 and define the code to prepare the dialog box. In line 18, you construct the
AlertDialog.Builder class object; the prototype of this constructor function is

AlertDialog.Builder(Context context)
AlertDialog.Builder(Context context, int theme)

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

127

You use the first prototype in this example to pass the Activity object, which
constructs the dialog box as the context of the constructor function. This is followed by
setting the title display text, icons, and other attributes of the dialog box in lines 19 and 21.

The AlertDialog.Builder dialog box can take up to three buttons: left, middle,
and right. They are set up by the setPositiveButton, setNeutralButton, and
setNegativeButton functions, respectively. You can specify how many dialog box buttons
you need. This example uses two buttons: left and right.

Lines 23–29 set the left button of the dialog box and click-response code. The
prototype of the setPositiveButton function of the AlertDialog.Builder class is

AlertDialog.Builder setPositiveButton(int textId, DialogInterface.
OnClickListener listener)
AlertDialog.Builder setPositiveButton(CharSequence text, DialogInterface.
OnClickListener listener)

You use a second prototype in the example, where the first parameter is text
displayed by the button, and the second parameter is the interface object of the click
response.

In line 25, you first call the dismissal or cancel function of the DialogInterface class
to close the dialog box. DialogInterface is the operating interface of the dialog class
(AlertDialog, Dialog, and so on). You use the dismiss function to close the dialog box in
line 25 and use a cancel function to close the dialog box in line 33.

Lines 26–27 close the activity and application, as described in the section “Exit
Activities and Application.” in Chapter 2, Figure 2-16. Interestingly, the internal class
DialogInterface.OnClickListener uses a member function of the non-dot external
class MainActivity and does not need to add the prefix in front of “class name.”

You set the dialog box for the right button and click-response code in lines
36–35. The click-response code is relatively simple, using the cancel function of the
DialogInterface class to close the dialog box in line 33.

Finally, line 36 calls the create function of the AlertDialog.Builder class to create
the exit dialog box object dlgExitApp. The function returns an AlertDialog object, and
its prototype is

AlertDialog create()

Because AlertDialog is derived from the Dialog class, the return value can be
assigned to the Dialog variable.

You add the Back key response code for the OnKeyDown response function on
lines 60–64. The code is relatively simple: you determine whether duplicate keys are
pressed on line 61, and then you call the show function of the Dialog class to display a
dialog box.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

128

Figure 4-7. The difference of Menulist and Application Setting display on target device

So far, almost all the examples have been based on the code framework of two
applications: GuiExam and HelloAndroid. But it is difficult to distinguish between them in
the menu on the target device. These applications are indistinguishable in the menu list
because you used the default settings instead of applying their own property settings. This
section shows you how to apply property settings.

Figure 4-8 shows the applications setting interface before and after applying property
settings.

Application Property Settings
In Android device, there are two difference places where you can find out the information
about the applications installed. One is the menu list (the interface after you press
the setting button), the other is by going to the Settings ➤ Applications ➤ Manage
Applications ➤ Downloaded menu item. See Figure 4-7:

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

129

This example uses the GuiExam application to show the steps for changing the
application settings:

1. Modify the icon of the application in the menu on the target
machine. Based on the ic_launcher.png file size under
the application res\drawable-XXX directory (where XXX
represents different resolutions—for example, drawable-hdpi
represents the directory for high-resolution images), edit your
image file, and name it ic_launcher.png.

The common screen resolutions for Android devices and the directories where
application icon files are stored are shown in Table 4-2.

Figure 4-8. The application on the target device before and after applying property setting

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

130

2. Put the custom picture file in the corresponding directory
res\drawable-XXX, and replace the original file. For example,
for the high-resolution screen application, replace the file
ic_launcher.png in res\drawable-xhdpi with your own, as
shown in Figure 4-9.

Table 4-2. Common Android Device Screen Resolutions and the Directories Containing
Application Icon Sizes

Directory Name Size Description

drawable-ldpi 36 × 36 dpi Low-resolution screen

drawable-mdpi 48 × 48 dpi Medium-resolution screen

drawable-hdpi 72 × 72 dpi High-resolution screen

drawable-xhdpi 96 × 96 dpi Super-high-resolution screen

drawable-xxhdpi 144 × 144 dpi Extra-extra-high-resolution screen

Figure 4-9. Replacing the application icon

3. Modify the application’s menu text annotation on the target
machine.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

131

Open the Package Explorer pane of the \res\values\strings.xml file. The title_
activity_my_main string value is set to a custom string (in this case, “GUI examples”),
as shown in Figure 4-10.

Figure 4-10. Modifying the icon text of the application

After completing these modifications, you can see that the target application’s menu
item’s icon and text label have changed.

Note step 1 can also be implemented by another method that can generate its own
set of icons when the application is created. The procedure is as follows:

1. In the Configure Launcher Icon dialog box, click the
Image button, and then click the Browse button to the right
of Image File.

2. Select the picture file as the application icon (in this case,
graywolf.png) in the Open dialog box, as shown in Figure 4-11.

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

132

The Configure Launcher Icon dialog box is shown in Figure 4-12.

Figure 4-11. Selecting the icon file when generating the application

Figure 4-12. Configuring the launcher icon when generating the application

Chapter 4 ■ GUI DesIGn for anDroID apps, part 4: GraphIC InterfaCe anD toUChsCreen InpUt

133

In other words, Eclipse can, based on the user-specified image file, automatically
generate the various ic_launcher.png files with the appropriate dimensions in the
res\drawable-XXX directory. This eliminates the need to manually edit the images.

In this last chapter covering Android GUI design, you are introduced to the basic
framework of drawings in the view, the concept of how the drawing Framework responds
to touch screen input, and how to control the display of the view as well as the
multi-touch code framework. You use an example that illustrates the multi-touch
programming framework and keyboard input response. You learn the methods to
respond to keyboard input and hardware buttons that are available on Android devices,
such as Volume +, Volume -, Power, Home, Menu, Back, Search, and so on. You are
introduced to the three different dialog boxes for Android, which include the activity
dialog theme, a specific class dialog, and Toast reminder. At the end of the chapter, you
learn how to change the application property settings.

A, B, C���������
Android application, 12

ART, 30
components, 26

activities, 26
broadcast intent receiver, 28
intent and intent filters, 27
service process, 27

content provider, 29
Dalvik virtual machine, 29
file structure, 12, 16

AndroidManifest.xml, 17
constant definitions, 20
layout files, 22
R.java file, 19
source code file, 25

Android devices vs. desktop computers
application windows, 7
copyright protection problems, 12
keyboard input problems, 11

command input restrictions, 11
onscreen keyboard application, 11

keys and buttons, 3
multimodal interactions, 6
onscreen keyboards, 6
screen size, 6

buttons and graphical elements, 7
densities, 2
text and icon size, 7

software distribution, 12
storage devices, 6
tap-only touch screens, 8

hover-over operations, 10
mapping errors, 9
moving the cursor

without clicking, 8
right-click functions, 11

touch screens and stylus, 5

Android interface design, 33. See also
GuiExam application

Android runtime (ART), 30

D���������
Dalvik virtual machine (DVM)

vs. ART, 30
vs. JVM, 29

Design applications, 71
explicit match, 71 (see also Direct

intent triggering mechanism)
implicit match, 71 (see also indirect

intent triggering mechanism)
Dialog boxes, 122

activity’s dialog theme, 122
AlertDialog class, 123
dismissDialog() function, 123
onCreateDialog() function, 122
onPrepareDialog() function, 123
ProgressDialog class, 123
showDialog() function, 122
toast reminders, 123

AlertDialog.Builder class, 126
application interface, 124
code implementation, 124
DialogInterface class, 127
OnKeyDown response function, 127
setPositiveButton function, 127

Direct intent triggering mechanism, 72
without parameters

activity class, 77
application interface, 73
callee activity, 72, 80
class-name modifiers, 80
constructor, 80
drag-and-drop layout, 76
final configuration, 76
layout configuration, 79

Index

135

layout file, 74–75
reflection, 73
setContentView() function, 78

with parameters
application interface, 82
callee activity, 81
executing application, 83
Intent.setClassName() function, 86
layout design, 84, 88
layout file, 89
onActivityResult function, 87
property-value data pairing, 86
set result function, 91

E, F���������
Embedded systems. See Android

devices vs. desktop computers

G, H���������
GuiExam application, 47

activity state transition, 33
active states, 33
finish function, 38
inactive states, 34
onCreate function, 36
onDestroy function, 38
onPause function, 37
onRestart function, 38
onResume function, 37
onStart function, 37
onStop function, 37
paused states, 34
schematic representation, 35
stopped states, 34
triggers, 39

applications and activities, 46
application interface, 68
DDMS view, 69
finish function, 65
ImageView, 66

buttons and events, 58
code implementation, 50
Context class, 39

activity context, 41
context wrapper/direct

context methods, 42

dialog constructor, 40
offspring classes, 40
subclasses, 40

design layouts, 52
interface structure, 54
text-edit widget, 53
text property, 52
user interface, 53

file structure, 48
ID attribute, 56
ImageView, 61
inner class listener, 59
intent, 43

action test, 45
category test, 45
components, 43
data test, 45
explicit matching/direct

intent, 44
implicit matching/indirect

intent, 44
mechanism, 44
roles, 43

interface, 49
setContentView function, 54
touchscreen input

code implementation, 106
constructor function, 108
setStyle function, 108
View.onDraw

function, 108

I, J, K, L, M, N, O, P, Q, ���������
R, S
Indirect intent triggering mechanism

built-in activity, 92
ACTION constants, 96
Activity.startActivityForResult()

function, 92
application interface, 93
constructor function, 95
layout file, 94

custom activity, 97
application interface, 97
Intent.ACTION_EDIT, 104
layout design, 99
layout file, 101

■ index

136

Direct intent triggering mechanism (cont.)

T, U, V, W, X, Y, Z���������
Touchscreen input, 105

application settings, 128
applying properties, 129
icon dialog box, 132
menulist, 128
screen resolutions, 129
target device, 128

dialog boxes, 122
activity’s dialog theme, 122
AlertDialog.Builder class, 127
AlertDialog class, 123
application interface, 123
code implementation, 124
DialogInterface class, 127
OnKeyDown response

function, 127
ProgressDialog class, 123
setPositiveButton function, 127
toast reminders, 123

display framework, 105
application interface, 109
code implementation, 109

fill mode parameters, 108
GuiExam project (see GUiExam

application)
onDraw function, 105
setContentView function, 106

drawing framework, 110
application interface, 111
code implementation, 111
invalidate function, 110
postInvalidate function, 110
View.onDraw function, 110
View.onTouchEvent, 110

keyboard input, 117
application interface, 118
code implementation, 119
keyCode parameter, 117, 121
onKeyDown function, 117
virtual machine, 119

multi-touch code framework, 113
application interface, 114
code implementation, 115
getx/gety functions, 113
onDraw function, 117
touch event class, 113

■ index

137

GUI Design for
Android Apps

Ryan Cohen, Lead Project Editor
Tao Wang, Lead Contributing Author

GUI Design for Android Apps

Ryan Cohen & Tao Wang

Copyright © 2014 by Apress Media, LLC, all rights reserved.

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use or alter
any source code in this Work for any commercial or non-commercial purpose which must be accompanied by
the licenses in (2) and (3) below to distribute the source code for instances of greater than
5 lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the text
of the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights
reserved. Use of this Work other than as provided for in this license is prohibited. By exercising any of the
rights herein, you are accepting the terms of this license. You have the non-exclusive right to copy, use and
distribute this English language Work in its entirety, electronically without modification except for those
modifications necessary for formatting on specific devices, for all non-commercial purposes, in all media
and formats known now or hereafter. While the advice and information in this Work are believed to be true
and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express
or implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses
(2) and (3) must accompany the source code. If your use is an adaptation of the source code provided by
Apress in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, from GUI Design for
Android Apps, ISBN 978-1-4842-0383-5 is copyrighted by Apress Media, LLC, all rights reserved. Any
direct reproduction of this Apress source code is permitted but must contain this license. The following
license must be provided for any use of the source code from this product of greater than 5 lines wherein
the code is adapted or altered from its original Apress form. This Apress code is presented AS IS and Apress
makes no claims to, representations or warrantees as to the function, usability, accuracy or usefulness of
this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code provided
are used or adapted from GUI Design for Android Apps, ISBN 978-1-4842-0383-5 copyright Apress
Media LLC. Any use or reuse of this Apress source code must contain this License. This Apress code is made
available at Apress.com/9781484203835 as is and Apress makes no claims to, representations or warrantees
as to the function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4842-0383-5

ISBN-13 (electronic): 978-1-4842-0382-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to
the material contained herein.

Publisher: Heinz Weinheimer
Associate Publisher: Jeffrey Pepper
Lead Editors: Steve Weiss (Apress); Stuart Douglas and Paul Cohen (Intel)
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress.com/978148320383-5
www.springeronline.com
www.springeronline.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user-friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

vii

Contents

About the Lead Project Editor ��� xi

About the Lead Contributing Author ��� xiii

About the Technical Reviewer ��� xv

Introduction ��� xvii

 Chapter 1: GUI Design for Android Apps, Part 1: ■
General Overview ��� 1

Overview of GUIs for Embedded Applications ��� 1

Characteristics of Interaction Modalities of Android Devices ����������������������������������� 2

UI Design Principles for Embedded Systems �� 6

Considerations of Screen Size �� 6

Size of Application Windows ��� 7

Considerations Arising from Touch Screens and Styluses �� 8

Keyboard Input Problems ��� 11

Software Distribution and Copyright Protection Problems ������������������������������������� 12

Android Application Overview ��� 12

Application File Framework ��� 12

Component Structure of Applications ��� 26

Content Provider ��� 29

Android Emulator �� 29

Introducing Android Runtime (ART) �� 30

Summary ��� 31

■ Contents

viii

 Chapter 2: GUI Design for Android Apps, Part 2: ■
The Android-Specific GUI �� 33

State Transitions of Activities �� 33

Activity States ��� 33

Important Functions of Activities �� 36

The Context Class �� 39

Introduction to Intent ��� 43

The Main Roles of Intent ��� 43

Intent Resolution ��� 44

The Relationship between Applications and Activities �������������������������� 46

The Basic Android Application Interface ��� 47

GuiExam Application Code Analysis �� 47

Using Layouts as Interfaces ��� 52

Using the View Directly as an Interface �� 54

Component ID ��� 56

Buttons and Events ��� 58

Inner Class Listener �� 59

Using ImageView �� 61

Exit Activities and Application ��� 65

Summary ��� 69

 Chapter 3: GUI Design for Android Apps, Part 3: ■
Designing Complex Applications �� 71

Applications with Multiple Activities ��� 71

Triggering an Explicit Match of Activities with No Parameters ������������������������������� 72

Triggering Explicit Matching of an Activity with Parameters of Different
Applications �� 81

Implicit Matching of Built-In Activities �� 92

Implicit Match that Uses a Custom Activity �� 97

■ Contents

ix

 Chapter 4: GUI Design for Android Apps, Part 4: ■
Graphic Interface and Touchscreen Input ����������������������������������� 105

Display Output Framework �� 105

Drawing Framework for Responding to Touchscreen Input ���������������� 110

Multi-Touch Code Framework ��� 113

Responding to Keyboard Input �� 117

Dialog Boxes in Android �� 122

Using an Activity’s Dialog Theme �� 122

Using a Specific Dialog Class ��� 123

Using Toast Reminders ��� 123

Dialog Box Example �� 123

Application Property Settings �� 128

Index �� 135

xi

About the Lead Project Editor

Ryan Cohen is the contributing editor responsible for
leading the international team of content contributors
who created this Intel learning resource; he’s also an
Android enthusiast and Portland State graduate. Ryan
has been following Android since 2011 when he made
the switch from Apple iOS. When he is not writing about
Android, he spends his time researching anything and
everything new in the world of Android.

xiii

About the Lead Contributing
Author

Tao Wang came to United States as a Ph.D. student to
study at Oregon State University in 1993. He has been
a software engineer with Intel Corporation since 2002.
Tao began blogging and writing about Android in 2008;
and, since 2011, he has served as a technical collateral
manager for the Intel Android Developer Zone, the
developer resource for all things Android at Intel. In
his spare time, Tao also runs his own mobile app/client
education startup called E-k12. He follows closely the
latest progress in application development, as well
as testing/debugging/performance optimization for
mobile devices and Android on x86 platforms. Tao
is skilled in many platforms, including Android SDK
and NDK; Intel Android tools; game engines such
as Cocos2D-x, AndEngine, and libgdx; OpenGL ES;

RenderScript; and Android Runtime. His other areas of interest include mobile Internet
technologies such as online content management, cloud-based mobile technologies,
embedded devices, robotics, and mobile learning on the go.

xv

About the Technical
Reviewer

Xavier Hallade is Developer Evangelist for the Intel
Software and Services Group in Paris, France. Since
2012 and the public release of the first Android
smartphone based on an Intel platform, he has been
helping Android developers improve their support for
new hardware and technologies made or supported
by Intel.

	GUI Design forAndroid Apps
	Contents at a Glance
	Copyright
	Contents
	About the Lead Project Editor
	About the Lead ContributingAuthor
	About the TechnicalReviewer
	Introduction
	Chapter 1: GUI Design for Android Apps, Part 1: General Overview
	Overview of GUIs for Embedded Applications
	Characteristics of Interaction Modalities of Android Devices
	Screens of Various Sizes, Densities, and Specifications
	Keypads and Special Keys
	Touch Screens and Styluses, in Place of Mice
	Onscreen Keyboards
	Few Multimodal Interactions
	Few Large-Capacity Portable External Storage Devices

	UI Design Principles for Embedded Systems
	Considerations of Screen Size
	Size of Text and Icons
	Clickability of Buttons and Other Graphical Elements

	Size of Application Windows
	Considerations Arising from Touch Screens and Styluses
	Correctly Interpreting the Movement and Input of the Cursor (Mouse) on Tap-Only Touch Screens
	Setting Screen Mapping Correctly
	How to Solve Hover-Over Problems
	Providing Right-Click Functionality

	Keyboard Input Problems
	Restricting the Input of Various Commands
	Meeting Keyboard Demand

	Software Distribution and Copyright Protection Problems

	Android Application Overview
	Application File Framework
	AndroidManifest.xml
	R.java
	Definition File of Constants
	Layout Files
	Source Code File

	Component Structure of Applications
	Activity
	Intent and Intent Filters
	Service
	Broadcast Intent Receiver

	Content Provider
	Android Emulator
	Introducing Android Runtime (ART)

	Summary

	Chapter 2: GUI Design for Android Apps, Part 2: The Android-Specific GUI
	State Transitions of Activities
	Activity States
	Important Functions of Activities
	onCreate State-Transition Function
	onStart State-Transition Function
	onResume State-Transition Function
	onPause State-Transition Function
	onStop State-Transition Function
	onRestart State-Transition Function
	onDestroy State-Transition Function
	The finish Function

	The Context Class
	Introduction to Intent
	The Main Roles of Intent
	Triggering a New Activity or Letting an Existing Activity Implement the New Operation
	Triggering a New Service or Sending New Requests to Existing Services
	Trigger BroadcastReceiver

	Intent Resolution
	Action Test
	Category Test
	Data Test

	The Relationship between Applications and Activities
	The Basic Android Application Interface
	GuiExam Application Code Analysis
	Using Layouts as Interfaces
	Using the View Directly as an Interface
	Component ID

	Buttons and Events
	Inner Class Listener
	Using ImageView
	Exit Activities and Application

	Summary

	Chapter 3: GUI Design for Android Apps, Part 3: Designing Complex Applications
	Applications with Multiple Activities
	Triggering an Explicit Match of Activities with No Parameters
	Triggering Explicit Matching of an Activity with Parameters of Different Applications
	Implicit Matching of Built-In Activities
	Implicit Match that Uses a Custom Activity

	Chapter 4: GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input
	Display Output Framework
	Drawing Framework for Responding to Touchscreen Input
	Multi-Touch Code Framework
	Responding to Keyboard Input
	Dialog Boxes in Android
	Using an Activity’s Dialog Theme
	onCreateDialog(int) Function
	showDialog(int) Function
	onPrepareDialog(int, Dialog) Function
	dismissDialog(int) Function

	Using a Specific Dialog Class
	Using Toast Reminders
	Dialog Box Example

	Application Property Settings

	Index

	GUI Design forAndroid Apps
	Contents at a Glance
	Contents
	About the Lead Project Editor
	About the Lead ContributingAuthor
	About the TechnicalReviewer
	Introduction
	Chapter 1: GUI Design for Android Apps, Part 1: General Overview
	Overview of GUIs for Embedded Applications
	Characteristics of Interaction Modalities of Android Devices
	Screens of Various Sizes, Densities, and Specifications
	Keypads and Special Keys
	Touch Screens and Styluses, in Place of Mice
	Onscreen Keyboards
	Few Multimodal Interactions
	Few Large-Capacity Portable External Storage Devices

	UI Design Principles for Embedded Systems
	Considerations of Screen Size
	Size of Text and Icons
	Clickability of Buttons and Other Graphical Elements

	Size of Application Windows
	Considerations Arising from Touch Screens and Styluses
	Correctly Interpreting the Movement and Input of the Cursor (Mouse) on Tap-Only Touch Screens
	Setting Screen Mapping Correctly
	How to Solve Hover-Over Problems
	Providing Right-Click Functionality

	Keyboard Input Problems
	Restricting the Input of Various Commands
	Meeting Keyboard Demand

	Software Distribution and Copyright Protection Problems

	Android Application Overview
	Application File Framework
	AndroidManifest.xml
	R.java
	Definition File of Constants
	Layout Files
	Source Code File

	Component Structure of Applications
	Activity
	Intent and Intent Filters
	Service
	Broadcast Intent Receiver

	Content Provider
	Android Emulator
	Introducing Android Runtime (ART)

	Summary

	Chapter 2: GUI Design for Android Apps, Part 2: The Android-Specific GUI
	State Transitions of Activities
	Activity States
	Important Functions of Activities
	onCreate State-Transition Function
	onStart State-Transition Function
	onResume State-Transition Function
	onPause State-Transition Function
	onStop State-Transition Function
	onRestart State-Transition Function
	onDestroy State-Transition Function
	The finish Function

	The Context Class
	Introduction to Intent
	The Main Roles of Intent
	Triggering a New Activity or Letting an Existing Activity Implement the New Operation
	Triggering a New Service or Sending New Requests to Existing Services
	Trigger BroadcastReceiver

	Intent Resolution
	Action Test
	Category Test
	Data Test

	The Relationship between Applications and Activities
	The Basic Android Application Interface
	GuiExam Application Code Analysis
	Using Layouts as Interfaces
	Using the View Directly as an Interface
	Component ID

	Buttons and Events
	Inner Class Listener
	Using ImageView
	Exit Activities and Application

	Summary

	Chapter 3: GUI Design for Android Apps, Part 3: Designing Complex Applications
	Applications with Multiple Activities
	Triggering an Explicit Match of Activities with No Parameters
	Triggering Explicit Matching of an Activity with Parameters of Different Applications
	Implicit Matching of Built-In Activities
	Implicit Match that Uses a Custom Activity

	Chapter 4: GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input
	Display Output Framework
	Drawing Framework for Responding to Touchscreen Input
	Multi-Touch Code Framework
	Responding to Keyboard Input
	Dialog Boxes in Android
	Using an Activity’s Dialog Theme
	onCreateDialog(int) Function
	showDialog(int) Function
	onPrepareDialog(int, Dialog) Function
	dismissDialog(int) Function

	Using a Specific Dialog Class
	Using Toast Reminders
	Dialog Box Example

	Application Property Settings

	Index

